Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard P. Beyer is active.

Publication


Featured researches published by Richard P. Beyer.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo

Evelyn S. Vincow; Gennifer Merrihew; Ruth E. Thomas; Nicholas J. Shulman; Richard P. Beyer; Michael J. MacCoss; Leo J. Pallanck

The accumulation of damaged mitochondria has been proposed as a key factor in aging and the pathogenesis of many common age-related diseases, including Parkinson disease (PD). Recently, in vitro studies of the PD-related proteins Parkin and PINK1 have found that these factors act in a common pathway to promote the selective autophagic degradation of damaged mitochondria (mitophagy). However, whether Parkin and PINK1 promote mitophagy under normal physiological conditions in vivo is unknown. To address this question, we used a proteomic approach in Drosophila to compare the rates of mitochondrial protein turnover in parkin mutants, PINK1 mutants, and control flies. We found that parkin null mutants showed a significant overall slowing of mitochondrial protein turnover, similar to but less severe than the slowing seen in autophagy-deficient Atg7 mutants, consistent with the model that Parkin acts upstream of Atg7 to promote mitophagy. By contrast, the turnover of many mitochondrial respiratory chain (RC) subunits showed greater impairment in parkin than Atg7 mutants, and RC turnover was also selectively impaired in PINK1 mutants. Our findings show that the PINK1–Parkin pathway promotes mitophagy in vivo and, unexpectedly, also promotes selective turnover of mitochondrial RC subunits. Failure to degrade damaged RC proteins could account for the RC deficits seen in many PD patients and may play an important role in PD pathogenesis.


Nature Methods | 2005

The External RNA Controls Consortium: a progress report

Shawn C. Baker; Steven R. Bauer; Richard P. Beyer; James D. Brenton; Bud Bromley; John Burrill; Helen C. Causton; Michael P Conley; Rosalie K. Elespuru; Michael Fero; Carole Foy; James C. Fuscoe; Xiaolian Gao; David Gerhold; Patrick Gilles; Federico Goodsaid; Xu Guo; Joe Hackett; Richard D. Hockett; Pranvera Ikonomi; Rafael A. Irizarry; Ernest S. Kawasaki; Tamma Kaysser-Kranich; Kathleen F. Kerr; Gretchen Kiser; Walter H. Koch; Kathy Y Lee; Chunmei Liu; Z Lewis Liu; Chitra Manohar

Standard controls and best practice guidelines advance acceptance of data from research, preclinical and clinical laboratories by providing a means for evaluating data quality. The External RNA Controls Consortium (ERCC) is developing commonly agreed-upon and tested controls for use in expression assays, a true industry-wide standard control.Standard controls and best practice guidelines advance acceptance of data from research, preclinical and clinical laboratories by providing a means for evaluating data quality. The External RNA Controls Consortium (ERCC) is developing commonly agreed-upon and tested controls for use in expression assays, a true industry-wide standard control.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Tbr1 regulates regional and laminar identity of postmitotic neurons in developing neocortex

Francesco Bedogni; Rebecca D. Hodge; Gina E. Elsen; Branden R. Nelson; Ray A. M. Daza; Richard P. Beyer; Theo K. Bammler; John L.R. Rubenstein; Robert F. Hevner

Areas and layers of the cerebral cortex are specified by genetic programs that are initiated in progenitor cells and then, implemented in postmitotic neurons. Here, we report that Tbr1, a transcription factor expressed in postmitotic projection neurons, exerts positive and negative control over both regional (areal) and laminar identity. Tbr1 null mice exhibited profound defects of frontal cortex and layer 6 differentiation, as indicated by down-regulation of gene-expression markers such as Bcl6 and Cdh9. Conversely, genes that implement caudal cortex and layer 5 identity, such as Bhlhb5 and Fezf2, were up-regulated in Tbr1 mutants. Tbr1 implements frontal identity in part by direct promoter binding and activation of Auts2, a frontal cortex gene implicated in autism. Tbr1 regulates laminar identity in part by downstream activation or maintenance of Sox5, an important transcription factor controlling neuronal migration and corticofugal axon projections. Similar to Sox5 mutants, Tbr1 mutants exhibit ectopic axon projections to the hypothalamus and cerebral peduncle. Together, our findings show that Tbr1 coordinately regulates regional and laminar identity of postmitotic cortical neurons.


Journal of Computational Physics | 1992

A computational model of the cochlea using the immersed boundary method

Richard P. Beyer

This thesis describes a two-dimensional computational model of the cochlea (inner ear) solved using a modified form of Peskins immersed boundary method. This method is an extension of Peskins method that was originally applied to solving a model of the heart (1972). This method solves the time-dependent incompressible Navier-Stokes equations in the presence of immersed boundaries. The fluid equations are specified on a fixed Eulerian grid while the immersed boundaries are specified on a moving Lagrangian grid. The immersed boundaries are used to represent the structures of the cochlea: the rigid bone, the actively moving stapes, and the flexible membranes. The immersed boundaries exert forces locally on the fluid. These local forces are seen by the fluid as external forces that are added to the other forces, pressure and viscous, acting on the fluid. The computational method divides into three separate parts. First, the forces exerted by the points of the immersed boundary are calculated and extended to the fluid grid. Second, the fluid equations are solved, and the velocities are restricted to the immersed boundary points. Finally, the immersed-boundary points are moved to their new locations at the new local velocities. The immersed-boundary forces are either specified such that the boundary moves at a given velocity (zero or non-zero), or they are specified such that the forces obey some given force law, for example, Hookes Law. These forces can be calculated either explicitly or implicitly or a combination of both. For the fluid, the Navier-Stokes equations are solved on a doubly periodic rectangular grid in a second-order accurate manner using a projection method developed by Bell, Colella, and Glaz (1988). The extension and restriction of the boundary forces and fluid velocities to and from the fluid grid are also done in a second-order accurate manner. The cochlea is modelled as two fluid chambers separated by a flexible partition whose stiffness varies exponentially along its length. The stapes is represented by a moving piston and the bony outer walls are allowed to be either straight or tapered. A travelling wave propagates along the flexible partition under the influence of the moving piston, and the dependence of this wave on cochlea geometry and partition stiffness is studied. Also included are studies of bone conduction and transient signal analysis. Finally, comparisons of the model results are made to experimental data and asymptotic results.


Journal of Experimental Medicine | 2008

Regulation of liver regeneration and hepatocarcinogenesis by suppressor of cytokine signaling 3

Kimberly J. Riehle; Jean S. Campbell; Ryan S. McMahan; Melissa M. Johnson; Richard P. Beyer; Theo K. Bammler; Nelson Fausto

Suppressor of cytokine signaling 3 (SOCS3) down-regulates several signaling pathways in multiple cell types, and previous data suggest that SOCS3 may shut off cytokine activation at the early stages of liver regeneration (Campbell, J.S., L. Prichard, F. Schaper, J. Schmitz, A. Stephenson-Famy, M.E. Rosenfeld, G.M. Argast, P.C. Heinrich, and N. Fausto. 2001.J. Clin. Invest. 107:1285–1292). We developed Socs3 hepatocyte-specific knockout (Socs3 h-KO) mice to directly study the role of SOCS3 during liver regeneration after a two-thirds partial hepatectomy (PH). Socs3 h-KO mice demonstrate marked enhancement of DNA replication and liver weight restoration after PH in comparison with littermate controls. Without SOCS3, signal transducer and activator of transcription 3 (STAT3) phosphorylation is prolonged, and activation of the mitogenic extracellular signal-regulated kinase 1/2 (ERK1/2) is enhanced after PH. In vitro, we show that SOCS3 deficiency enhances hepatocyte proliferation in association with enhanced STAT3 and ERK activation after epidermal growth factor or interleukin 6 stimulation. Microarray analyses show that SOCS3 modulates a distinct set of genes, which fall into diverse physiological categories, after PH. Using a model of chemical-induced carcinogenesis, we found that Socs3 h-KO mice develop hepatocellular carcinoma at an accelerated rate. By acting on cytokines and multiple proliferative pathways, SOCS3 modulates both physiological and neoplastic proliferative processes in the liver and may act as a tumor suppressor.


Aging Cell | 2014

Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart

Dao Fu Dai; Pabalu P. Karunadharma; Ying Ann Chiao; Nathan Basisty; David A. Crispin; Edward J. Hsieh; Tony Chen; Haiwei Gu; Danijel Djukovic; Daniel Raftery; Richard P. Beyer; Michael J. MacCoss; Peter S. Rabinovitch

Chronic caloric restriction (CR) and rapamycin inhibit the mechanistic target of rapamycin (mTOR) signaling, thereby regulating metabolism and suppressing protein synthesis. Caloric restriction or rapamycin extends murine lifespan and ameliorates many aging‐associated disorders; however, the beneficial effects of shorter treatment on cardiac aging are not as well understood. Using a recently developed deuterated‐leucine labeling method, we investigated the effect of short‐term (10 weeks) CR or rapamycin on the proteomics turnover and remodeling of the aging mouse heart. Functionally, we observed that short‐term CR and rapamycin both reversed the pre‐existing age‐dependent cardiac hypertrophy and diastolic dysfunction. There was no significant change in the cardiac global proteome (823 proteins) turnover with age, with a median half‐life 9.1 days in the 5‐month‐old hearts and 8.8 days in the 27‐month‐old hearts. However, proteome half‐lives of old hearts significantly increased after short‐term CR (30%) or rapamycin (12%). This was accompanied by attenuation of age‐dependent protein oxidative damage and ubiquitination. Quantitative proteomics and pathway analysis revealed an age‐dependent decreased abundance of proteins involved in mitochondrial function, electron transport chain, citric acid cycle, and fatty acid metabolism as well as increased abundance of proteins involved in glycolysis and oxidative stress response. This age‐dependent cardiac proteome remodeling was significantly reversed by short‐term CR or rapamycin, demonstrating a concordance with the beneficial effect on cardiac physiology. The metabolic shift induced by rapamycin was confirmed by metabolomic analysis.


The Journal of Neuroscience | 2009

Rab11a and HSP90 Regulate Recycling of Extracellular α-Synuclein

Jun Liu; Jianpeng Zhang; Min Shi; Thomas P. Quinn; Joshua Bradner; Richard P. Beyer; Sheng-Di Chen; Jing Zhang

Growing evidence suggests that extracellular α-synuclein (eSNCA) may play an important role in the pathogenesis of Parkinsons disease (PD) and related synucleinopathies by producing neurotoxicity directly or via activation of glia. However, the mechanisms involved in the trafficking of eSNCA in neurons and/or glia remain unclear. Here, we demonstrated that eSNCA could be resecreted out of neurons via a process modulated by a recycling endosome regulator rab11a in addition to being degraded by an endosome–lysosome system. A quantitative proteomic analysis also revealed numerous proteins through which rab11a might execute its function. One of the candidate proteins, heat shock protein 90 (HSP90), was validated to be interacting with rab11a. Furthermore, geldanamycin, an HSP90 inhibitor, not only prevented resecretion of eSNCA but also attenuated neurotoxicity induced by eSNCA.


Cardiovascular Research | 2012

Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress

Dao Fu Dai; Edward J. Hsieh; Yonggang Liu; Tony Chen; Richard P. Beyer; Michael T. Chin; Michael J. MacCoss; Peter S. Rabinovitch

AIMS We investigate the role of mitochondrial oxidative stress in mitochondrial proteome remodelling using mouse models of heart failure induced by pressure overload. METHODS AND RESULTS We demonstrate that mice overexpressing catalase targeted to mitochondria (mCAT) attenuate pressure overload-induced heart failure. An improved method of label-free unbiased analysis of the mitochondrial proteome was applied to the mouse model of heart failure induced by transverse aortic constriction (TAC). A total of 425 mitochondrial proteins were compared between wild-type and mCAT mice receiving TAC or sham surgery. The changes in the mitochondrial proteome in heart failure included decreased abundance of proteins involved in fatty acid metabolism, an increased abundance of proteins in glycolysis, apoptosis, mitochondrial unfolded protein response and proteolysis, transcription and translational control, and developmental processes as well as responses to stimuli. Overexpression of mCAT better preserved proteins involved in fatty acid metabolism and attenuated the increases in apoptotic and proteolytic enzymes. Interestingly, gene ontology analysis also showed that monosaccharide metabolic processes and protein folding/proteolysis were only overrepresented in mCAT but not in wild-type mice in response to TAC. CONCLUSION This is the first study to demonstrate that scavenging mitochondrial reactive oxygen species (ROS) by mCAT not only attenuates most of the mitochondrial proteome changes in heart failure, but also induces a subset of unique alterations. These changes represent processes that are adaptive to the increased work and metabolic requirements of pressure overload, but which are normally inhibited by overproduction of mitochondrial ROS.


Science | 2012

Coagulation Factor X Activates Innate Immunity to Human Species C Adenovirus

Konstantin Doronin; Justin W. Flatt; Nelson C. Di Paolo; Reeti Khare; Oleksandr Kalyuzhniy; Mauro Acchione; John P. Sumida; Umeharu Ohto; Toshiyuki Shimizu; Sachiko Akashi-Takamura; Kensuke Miyake; James W. MacDonald; Theo K. Bammler; Richard P. Beyer; Frederico M. Farin; Phoebe L. Stewart; Dmitry M. Shayakhmetov

Wound Healing and Immunity Although wound healing and infection are often overlapping processes, whether the wound healing response modulates the immune response is not well understood. Doronin et al. (p. 795, published online 27 September; see the Perspective by Herzog and Ostrov) now show that coagulation factor X, an important component of the blood clotting cascade, helps to trigger antiviral immunity in response to adenovirus infection in mice. Factor X binds to human type C adenovirus with very high affinity. Structural analysis identified the critical binding residues between factor X and adenovirus, which, when mutated, inhibited binding. Despite being able to infect splenic macrophages in mice, transcriptional profiling of spleens from mice infected with a mutant adenovirus unable to bind to factor X revealed impaired activation of signaling cascades associated with innate immunity. Tagging adenovirus with a serum protein prompts an immune response when the virus enters cells. Although coagulation factors play a role in host defense for “living fossils” such as horseshoe crabs, the role of the coagulation system in immunity in higher organisms remains unclear. We modeled the interface of human species C adenovirus (HAdv) interaction with coagulation factor X (FX) and introduced a mutation that abrogated formation of the HAdv-FX complex. In vivo genome-wide transcriptional profiling revealed that FX-binding–ablated virus failed to activate a distinct network of nuclear factor κB–dependent early-response genes that are activated by HAdv-FX complex downstream of TLR4/MyD88/TRIF/TRAF6 signaling. Our study implicates host factor “decoration” of the virus as a mechanism to trigger an innate immune sensor that responds to a misplacement of coagulation FX from the blood into intracellular macrophage compartments upon virus entry into the cell.


Aging Cell | 2007

Transcriptional response to aging and caloric restriction in heart and adipose tissue

Nancy J. Linford; Richard P. Beyer; Katherine A. Gollahon; Rozlyn A. Krajcik; Virginia Malloy; Vasiliki Demas; Glenna C. Burmer; Peter S. Rabinovitch

Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix® RAE 230 arrays and validated by quantitative reverse transcriptase–polymerase chain reaction (qRT‐PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age‐associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age‐associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age‐associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down‐regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator‐activated receptor γ (PPARγ)‐mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue‐specific differences in the gene expression response to CR and support a role for CR‐mediated preservation of mTOR activity and adipogenesis in aging WAT.

Collaboration


Dive into the Richard P. Beyer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Zhang

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael L. Cunningham

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge