Richard P. Ciavarra
Eastern Virginia Medical School
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard P. Ciavarra.
Lab Animal | 2008
Christina Steel; Amber L. Stephens; Suzanne M. Hahto; Sylvia J. Singletary; Richard P. Ciavarra
In mice, intravenous injections are commonly administered in the lateral tail vein. This technique is sometimes difficult to carry out and may cause stress to mice. Though injection through the retro-orbital venous sinus can provide certain advantages over lateral tail vein injection, this method is poorly defined and infrequently used. To compare the efficacy of these two routes of drug delivery, the authors injected MAFIA transgenic mice with the depletion agent AP20187, which selectively induces apoptosis in macrophages. Each mouse received five consecutive daily injections through either the lateral tail vein or the retro-orbital venous sinus. The authors then compared macrophage depletion in different tissues (lung, spleen, bone marrow and peritoneal exudate cells). Both routes of injection were similarly effective. A separate experiment using BALB/c mice indicated that retro-orbital venous sinus injection was the less stressful of the two methods.
Journal of Immunology | 2006
Richard P. Ciavarra; Amber L. Stephens; Sandra Nagy; Margaret J. Sekellick; Christina Steel
We have examined the role of dendritic cells (DCs) in the antiviral immune response and viral clearance using a transgenic mouse model (CD11c-diphtheria toxin (DT) receptor GFP) that allows for their conditional ablation in vivo. DT administration systemically ablated conventional and IFN-producing plasmacytoid DCs (pDCs) in transgenic, but not nontransgenic littermates, without elimination of splenic macrophages. Unexpectedly, early (12 and 48 h postinfection) viral clearance of vesicular stomatitis virus was normal in DC-depleted mice despite markedly reduced serum titers of type I IFN. DC-depleted mice remained virus-free with the exception of a subset (∼30%) that developed overwhelming and fatal brain infections 6 days postinfection. However, DT treatment profoundly inhibited clonal expansion of naive CD8+ vesicular stomatitis virus-specific T cells without altering the primary Th1 and Th2 cytokine response. Optimal clonal expansion required pDCs because selective elimination of these cells in vivo with a depleting Ab also suppressed expansion of tetramer+ cells, although Th1/Th2 cytokine production remained unaltered. Collectively, these data indicate that conventional DCs and to a lesser extent pDCs are critical for proliferation of naive antiviral T cells. However, other components of the primary adaptive immune response (Th1/Th2 cytokines) are essentially normal in the absence of DCs, which may account for the efficient viral clearance seen in DC-depleted mice. Thus, sufficient redundancy exists in the immune system to sustain efficient viral clearance despite loss of an APC considered essential for induction of a primary antiviral immune response.
Cellular Immunology | 1990
Richard P. Ciavarra; Alan Simeone
We have investigated the effect of febrile temperatures (less than or equal to 41 degrees C) on T cell heat shock protein (hsp) synthesis and the acquisition of stress tolerance. Enhanced synthesis of hsps was detected in highly purified T cells and two cloned T cell lines representing helper T (D10) and cytotoxic T cell (Qa-2 128.38) subsets at temperatures as low as 39 degrees C with a maximal response at 41 degrees C. Three major hsps with approximate molecular weights of 110, 90, and 75 were detected in these T cell populations. Western blot analysis using a monoclonal antibody specific for hsp70 indicated that the 75-kDa protein represented hscp70, the cognate or constitutively produced member of the hsp70 family. Although the strongly heat-inducible hsp70 could not be detected in T cells incubated at 41 degrees C by immunoblot analysis, two-dimensional SDS-PAGE analysis did detect a modest induction of hsp70. Thus, hscp70 and not hsp70 was the major intracellular hsp70 member in T cells incubated at febrile temperatures. Enhanced hsp synthesis reflected augmented transcription of hsp genes which was contingent on the continued presence of hyperthermic stress. In order to determine whether induction of hsp synthesis conferred a state of increased resistance to thermal stress, splenic T cells were incubated at either 37 degrees or 41 degrees C (induction temperatures) and then subjected to a heat-shock challenge temperature. These studies revealed that following heat-shock challenge, mitogen-stimulated T cells preincubated at 41 degrees C synthesized DNA at an enhanced rate relative to controls (induction temperature, 37 degrees C). Thus, febrile temperatures were capable of inducing a state of acquired thermotolerance in T cells. However, the thermotolerant state did not protect T cell proliferation against other unrelated stressors such as cadmium and dexamethasone. Reconstitution experiments with accessory cells and interleukin-2-containing supernatants failed to reveal enhanced resistance in thermotolerant T cells to cadmium toxicity or the immunosuppressive activities of dexamethasone. The possibility that higher intracellular concentrations of hsps are required to demonstrate protection against these stressors was tested by the concurrent exposure of T cells to a febrile temperature (41 degrees C) and ethanol. This resulted in a synergistic increase in hsp90 and hsp70 synthesis; however, there was no evidence of enhanced resistance to cadmium- or dexamethasone-induced stress in T cells given this induction protocol. Similarly, alloreactive cytotoxic T lymphocyte responses were inhibited to the same extent in both control and thermotolerant T cells.(ABSTRACT TRUNCATED AT 400 WORDS)
International Journal of Cancer | 2003
Kenneth D. Somers; Roy R. Brown; Daniel A. Holterman; Nazita Yousefieh; William F. Glass; George L. Wright; Paul F. Schellhammer; Jesse Qian; Richard P. Ciavarra
We established an orthotopic treatment model of prostate cancer to generate reproducible primary and metastatic carcinoma in immunocompetent C57BL/6 mice. Using an in vivo selection scheme of intraprostatic implantation of TRAMP‐C1 cells, primary prostate tumors were cultured and recycled three times by intraprostatic injection resulting in the selection and establishment of the recycled cell line TRAMP‐C1P3. Prostate tumors were detected ∼30 days post‐implantation with periaortic lymph node metastasis in 19/20 (95%) of mice. Tissue culture amplification, DNA ploidy and PCR amplification of the SV40 transgene were used to detect metastatic TRAMP‐C1P3 in lymph node specimens. Tissue culture amplification and DNA ploidy were as sensitive as SV40 transgene amplification by PCR in detection of early metastatic disease in draining lymph nodes. To establish the use of the orthotopic model of prostate cancer for immunotherapy, mice were injected orthotopically with TRAMP‐C1P3 cells and 7 days post‐implantation treated daily for 28 days with either flt3L or carrier control. Carrier‐treated mice had clinically detectable prostate tumors, lymph node metastasis and were moribund at 29–35 days, whereas flt3L therapy markedly suppressed primary TRAMP‐C1P3 growth and lymph node metastasis, and prolonged survival. In summary, we have established a reproducible and clinically relevant orthotopic treatment model of prostate cancer in immunocompetent mice with application to a variety of therapeutic strategies. We demonstrate that flt3L treatment suppressed orthotopic prostate tumor growth and lymph node metastasis reinforcing a role for flt3L as an immunotherapeutic strategy for prostate cancer.
Virology | 2009
Christina Steel; Suzanne M. Hahto; Richard P. Ciavarra
Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45(high)CD11b(+)) and CD8(+) T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8(+) T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-gamma) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.
Journal of Neuroimmunology | 2010
Christina Steel; Woong-Ki Kim; Larry D. Sanford; Laurie L. Wellman; Sandra H. Burnett; Nico van Rooijen; Richard P. Ciavarra
Intranasal application of vesicular stomatitis virus (VSV) induces acute encephalitis characterized by a pronounced myeloid and T cell infiltrate. The role of distinct phagocytic populations on VSV encephalitis was therefore examined in this study. Ablation of peripheral macrophages did not impair VSV encephalitis or viral clearance from the brain, whereas, depletion of splenic marginal dendritic cells impaired this response and enhanced morbidity/mortality. Selective depletion of brain perivascular macrophages also suppressed this response without altering viral clearance. Thus, two anatomically distinct phagocytic populations regulate VSV encephalitis in a non-redundant fashion although neither population is essential for viral clearance in the CNS.
Journal of Immunotherapy | 2004
Richard P. Ciavarra; Daniel A. Holterman; Roy R. Brown; Patricia Mangiotti; Nazita Yousefieh; George L. Wright; Paul F. Schellhammer; William F. Glass; Kenneth D. Somers
A novel orthotopic metastatic model of mouse prostate cancer was developed using MHC-negative TRAMP-C1P3 (tr ansgenic a denocarcinoma of m ouse p rostate) cells derived by serial passage of the parental TRAMP-C1 line in mouse prostate glands. TRAMP-C1P3 cells grew efficiently in mouse prostate glands and reproducibly metastasized to draining lymph nodes. Using this model, we show that Fms-like tyrosine kinase-3 ligand (flt3-L) dramatically inhibited growth of preexisting orthotopic TRAMP-C1P3 tumors and the development of metastatic disease. Mice remained in remission for several months following termination of flt3-L treatment but eventually relapsed and died of progressive disease. flt3-ligand treatment induced a pronounced mixed inflammatory cell infiltrate that consisted of CD8&agr;-CD4− dendritic cells (CD11c+), macrophages, granulocytes (Gr-1+) and to a lesser extent T cells (CD4+ and CD8+). Dendritic cells isolated from TRAMP-C1P3 tumors were phenotypically immature (CD11c+ B7.2-I-A−CD40−), and this phenotype was also predominant in peripheral organs of mice treated with flt3-L alone or in combination with the DC maturation factor, CD40-L. Diminished expression of TCR-&bgr;, CD3-ε, and CD3-ζ was also observed on intratumoral T cells, although these signaling proteins were reexpressed following in vitro culture with IL-2. The TCR/CD3 complex remained intact on peripheral T cells except in mice treated with flt3-L where CD3-ζ loss was observed. In contrast to &agr;&bgr;-T cells, tumor-infiltrating &ggr;&dgr;-T cells maintained expression of their antigen receptors but not CD3ε. Thus, TRAMP-C1P3 tumors quickly establish a microenvironment that profoundly diminishes expression of molecules critical for normal dendritic cell and T cell function, thus limiting the efficacy of flt3-L and CD40-L immunotherapy. Overall, these data suggest that long-term cures of established MHC-negative tumors may not be achieved until therapeutic interventions are engineered to overcome this immunosuppressive microenvironment.
Cancer Microenvironment | 2009
Nazita Yousefieh; Suzanne M. Hahto; Amber L. Stephens; Richard P. Ciavarra
Currently there are no curative therapies available for patients with metastatic prostate cancer. Thus, novel therapies are needed to treat this patient population. Immunotherapy represents one promising approach for the elimination of occult metastatic tumors. However, the prostate tumor microenvironment (TME) represents a hostile environment capable of suppressing anti-tumor immunity and effector cell function. In view of this immunosuppressive activity, we engineered murine prostate cancer cells with regulated expression (tet-on) of CCL21. Prostate tumor cells implanted orthotopically produced primary prostate tumors with predictable metastatic disease in draining lymph nodes and distant organs. Expression of CCL21 in the prostate TME enhanced survival, inhibited tumor growth and decreased the frequency of local (draining lymph node) and distant metastasis. Therefore, these studies provide a strong rationale for further evaluation of CCL21 in tumor immunity and its use in cancer immunotherapy.
Cellular Immunology | 1990
Richard P. Ciavarra
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.
Cellular Immunology | 1990
Richard P. Ciavarra; Alan Simeone
We have compared the effects of a mild heat shock and febrile temperatures on heat-shock protein (hsp) synthesis and development of stress tolerance in T lymphocytes. Our previous studies demonstrated that febrile temperatures (less than or equal to 41 degrees C) induced the synthesis of hsp110, hsp90, and the constitutive or cognate form of hsp70 (hscp70; a weak induction of the strongly stress-induced hsp70 was also observed. In the studies reported herein, we demonstrate that a mild heat shock (42.5 degrees C) reverses this ratio; that is, hsp70 and not hscp70 is the predominate member of this family synthesized at this temperature. Modest heat shock also enhanced the synthesis of hsp110 and hsp90. In order to assess the relationship between hsp synthesis and the acquisition of thermotolerance, purified T cells were first incubated at 42.5 degrees C (induction temperature) and then subsequently subjected to a severe heat-shock challenge (45 degrees C, 30 min). T cells first incubated at a mild heat-shock temperature were capable of total protein synthesis at a more rapid rate following a severe heat shock than control cells (induction temperature 37 degrees C). This phenomenon, which has been previously termed translational tolerance, did not develop in cells incubated at the febrile temperature (induction temperature 41 degrees C). Protection of translation also extended to immunologically relevant proteins such as interleukin-2 and the interleukin-2 receptor. Because clonal expansion is a critical event during an immune response, the effects of hyperthermic stress on DNA replication (mitogen-induced T cell proliferation) was also evaluated in thermotolerant T cells. DNA synthesis in control cells (induction temperature 37 degrees C) was severely inhibited following heat-shock challenge at 44 degrees C or 45 degrees C; in contrast, T cells preincubated at 42.5 degrees C rapidly recovered their DNA synthetic capacity. T cells preincubated at a febrile temperature were moderately protected against hyperthermic stress. The acquisition of thermotolerance was also associated with enhanced resistance to chemical (ethanol)-induced stress but not to heavy metal toxicity (cadmium) or dexamethasone-induced immunosuppression. These studies suggest that prior hsp synthesis may protect immune function against some forms of stress (e.g., febrile episode) but would be ineffective against others such as elevated glucocorticoid levels which normally occur during an immune response.