Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard P. Hulse is active.

Publication


Featured researches published by Richard P. Hulse.


Pain | 2013

Endogenous analgesic action of the pontospinal noradrenergic system spatially restricts and temporally delays the progression of neuropathic pain following tibial nerve injury

S. W. Hughes; Louise Hickey; Richard P. Hulse; Bridget M. Lumb; Anthony E. Pickering

Summary A role for the pontospinal noradrenergic system to dynamically restrict the spatiotemporal expression of the neuropathic pain phenotype in a nerve injury model. ABSTRACT Pontospinal noradrenergic neurons form part of an endogenous analgesic system that suppresses acute pain, but there is conflicting evidence about its role in neuropathic pain. We investigated the chronology of descending noradrenergic control during the development of a neuropathic pain phenotype in rats following tibial nerve transection (TNT). A lumbar intrathecal cannula was implanted at the time of nerve injury allowing administration of selective &agr;‐adrenoceptor (&agr;‐AR) antagonists to sequentially assay their effects upon the expression of allodynia and hyperalgesia. Following TNT animals progressively developed mechanical and cold allodynia (by day 10) and subsequently heat hypersensitivity (day 17). Blockade of &agr;2‐AR with intrathecal yohimbine (30 &mgr;g) revealed earlier ipsilateral sensitization of all modalities while prazosin (30 &mgr;g, &agr;1‐AR) was without effect. Established allodynia (by day 21) was partly reversed by the re‐uptake inhibitor reboxetine (5 &mgr;g, i.t.) but yohimbine no longer had any sensitising effect. This loss of effect coincided with a reduction in the descending noradrenergic innervation of the ipsilateral lumbar dorsal horn. Yohimbine reversibly unmasked contralateral hindlimb allodynia and hyperalgesia of all modalities and increased dorsal horn c‐fos expression to an innocuous brush stimulus. Contralateral thermal hyperalgesia was also reversibly uncovered by yohimbine administration in a contact heat ramp paradigm in anaesthetised TNT rats. Following TNT there is an engagement of inhibitory &agr;2‐AR‐mediated noradrenergic tone which completely masks contralateral and transiently suppresses the development of ipsilateral sensitization. This endogenous analgesic system plays a key role in shaping the spatial and temporal expression of the neuropathic pain phenotype after nerve injury.


Journal of The American Society of Nephrology | 2015

Vascular Endothelial Growth Factor-A165b Is Protective and Restores Endothelial Glycocalyx in Diabetic Nephropathy

Sebastian Oltean; Yan Qiu; Joanne K. Ferguson; Megan Stevens; Christopher R. Neal; Amy Russell; Amit Kaura; Kenton P. Arkill; Kirstie Harris; Clare Symonds; Katja Lacey; Lihini Wijeyaratne; Melissa Gammons; Emma Wylie; Richard P. Hulse; Chloe Alsop; George Cope; Gopinath Damodaran; Kai B. Betteridge; Raina Ramnath; Simon C. Satchell; Rebecca R. Foster; Kurt Ballmer-Hofer; Lucy F. Donaldson; Jonathan Barratt; Hans J. Baelde; Steven J. Harper; David O. Bates; Andrew H.J. Salmon

Diabetic nephropathy is the leading cause of ESRD in high-income countries and a growing problem across the world. Vascular endothelial growth factor-A (VEGF-A) is thought to be a critical mediator of vascular dysfunction in diabetic nephropathy, yet VEGF-A knockout and overexpression of angiogenic VEGF-A isoforms each worsen diabetic nephropathy. We examined the vasculoprotective effects of the VEGF-A isoform VEGF-A165b in diabetic nephropathy. Renal expression of VEGF-A165b mRNA was upregulated in diabetic individuals with well preserved kidney function, but not in those with progressive disease. Reproducing this VEGF-A165b upregulation in mouse podocytes in vivo prevented functional and histologic abnormalities in diabetic nephropathy. Biweekly systemic injections of recombinant human VEGF-A165b reduced features of diabetic nephropathy when initiated during early or advanced nephropathy in a model of type 1 diabetes and when initiated during early nephropathy in a model of type 2 diabetes. VEGF-A165b normalized glomerular permeability through phosphorylation of VEGF receptor 2 in glomerular endothelial cells, and reversed diabetes-induced damage to the glomerular endothelial glycocalyx. VEGF-A165b also improved the permeability function of isolated diabetic human glomeruli. These results show that VEGF-A165b acts via the endothelium to protect blood vessels and ameliorate diabetic nephropathy.


European Journal of Pain | 2010

Intact cutaneous C fibre afferent properties in mechanical and cold neuropathic allodynia

Richard P. Hulse; David Wynick; Lucy F. Donaldson

Patients with neuropathy, report changes in sensory perception, particularly mechanical and thermal allodynia, and spontaneous pain. Similar sensory changes are seen in experimental neuropathies, in which alteration in primary afferent properties can also be determined. The neural correlate of spontaneous pain is ongoing activity in sensory afferents. Mechanical and heat allodynia are thought to result from lowered activation thresholds in primary afferent and/or central neurones, but the mechanisms underlying cold allodynia are very poorly understood.


Molecular Pain | 2011

Activation of the galanin receptor 2 in the periphery reverses nerve injury-induced allodynia

Richard P. Hulse; David Wynick; Lucy F. Donaldson

BackgroundGalanin is expressed at low levels in the intact sensory neurons of the dorsal root ganglia with a dramatic increase after peripheral nerve injury. The neuropeptide is also expressed in primary afferent terminals in the dorsal horn, spinal inter-neurons and in a number of brain regions known to modulate nociception. Intrathecal administration of galanin modulates sensory responses in a dose-dependent manner with inhibition at high doses. To date it is unclear which of the galanin receptors mediates the anti-nociceptive effects of the neuropeptide and whether their actions are peripherally and/or centrally mediated. In the present study we investigated the effects of direct administration into the receptive field of galanin and the galanin receptor-2/3-agonist Gal2-11 on nociceptive primary afferent mechanical responses in intact rats and mice and in the partial saphenous nerve injury (PSNI) model of neuropathic pain.ResultsExogenous galanin altered the responses of mechano-nociceptive C-fibre afferents in a dose-dependent manner in both naive and nerve injured animals, with low concentrations facilitating and high concentrations markedly inhibiting mechano-nociceptor activity. Further, use of the galanin fragment Gal2-11 confirmed that the effects of galanin were mediated by activation of galanin receptor-2 (GalR2). The inhibitory effects of peripheral GalR2 activation were further supported by our demonstration that after PSNI, mechano-sensitive nociceptors in galanin over-expressing transgenic mice had significantly higher thresholds than in wild type animals, associated with a marked reduction in spontaneous neuronal firing and C-fibre barrage into the spinal cord.ConclusionsThese findings are consistent with the hypothesis that the high level of endogenous galanin in injured primary afferents activates peripheral GalR2, which leads to an increase in C-fibre mechanical activation thresholds and a marked reduction in evoked and ongoing nociceptive responses.


Neurobiology of Disease | 2014

Regulation of alternative VEGF-A mRNA splicing is a therapeutic target for analgesia.

Richard P. Hulse; Nicholas Beazley-Long; Jing Hua; Helen J. Kennedy; Jon B M Prager; Heather S. Bevan; Yan Qiu; Elizabeth S. Fernandes; Melissa Gammons; Kurt Ballmer-Hofer; A. C. Gittenberger de Groot; Amanda J. Churchill; Steven J. Harper; Susan D. Brain; David O. Bates; Lucy F. Donaldson

Vascular endothelial growth factor-A (VEGF-A) is best known as a key regulator of the formation of new blood vessels. Neutralization of VEGF-A with anti-VEGF therapy e.g. bevacizumab, can be painful, and this is hypothesized to result from a loss of VEGF-A-mediated neuroprotection. The multiple vegf-a gene products consist of two alternatively spliced families, typified by VEGF-A165a and VEGF-A165b (both contain 165 amino acids), both of which are neuroprotective. Under pathological conditions, such as in inflammation and cancer, the pro-angiogenic VEGF-A165a is upregulated and predominates over the VEGF-A165b isoform. We show here that in rats and mice VEGF-A165a and VEGF-A165b have opposing effects on pain, and that blocking the proximal splicing event – leading to the preferential expression of VEGF-A165b over VEGF165a – prevents pain in vivo. VEGF-A165a sensitizes peripheral nociceptive neurons through actions on VEGFR2 and a TRPV1-dependent mechanism, thus enhancing nociceptive signaling. VEGF-A165b blocks the effect of VEGF-A165a. After nerve injury, the endogenous balance of VEGF-A isoforms switches to greater expression of VEGF-Axxxa compared to VEGF-Axxxb, through an SRPK1-dependent pre-mRNA splicing mechanism. Pharmacological inhibition of SRPK1 after traumatic nerve injury selectively reduced VEGF-Axxxa expression and reversed associated neuropathic pain. Exogenous VEGF-A165b also ameliorated neuropathic pain. We conclude that the relative levels of alternatively spliced VEGF-A isoforms are critical for pain modulation under both normal conditions and in sensory neuropathy. Altering VEGF-Axxxa/VEGF-Axxxb balance by targeting alternative RNA splicing may be a new analgesic strategy.


Pain Research and Treatment | 2012

Peripheral Galanin Receptor 2 as a Target for the Modulation of Pain

Richard P. Hulse; Lucy F. Donaldson; David Wynick

The neuropeptide galanin is widely expressed in the nervous system and has an important role in nociception. It has been shown that galanin can facilitate and inhibit nociception in a dose-dependent manner, principally through the central nervous system, with enhanced antinociceptive actions after nerve injury. However, following nerve injury, expression of galanin within the peripheral nervous system is dramatically increased up to 120-fold. Despite this striking increase in the peripheral nervous system, few studies have investigated the role that galanin plays in modulating nociception at the primary afferent nociceptor. Here, we summarise the recent work supporting the role of peripherally expressed galanin with particular reference to the dual actions of the galanin receptor 2 in neuropathic pain highlighting this as a potential target analgesic.


Neuroreport | 2008

Characterization of a novel neuropathic pain model in mice

Richard P. Hulse; David Wynick; Lucy F. Donaldson

We describe the characterization of a partial saphenous nerve injury (PSNI) model of neuropathic pain in the mouse. PSNI resulted in significant mechanical allodynia in mice with no behavioural change to temperature stimulation. PSNI also resulted in ipsilateral paw ventroflexion, reduced functional innervation of the dorsal hindpaw and increased expression in the dorsal root ganglion of the neuropeptide galanin. We have used the PSNI model to study the electrophysiological properties of injured primary afferent neurones, demonstrating that single fibres can be identified and their properties studied. In galanin knockout mice, PSNI failed to induce allodynia as previously reported in other neuropathic pain models. PSNI can be used to simultaneously study behavioural and neurophysiological changes in wild-type and transgenic mice.


The Journal of Physiology | 2014

The degree of acute descending control of spinal nociception in an area of primary hyperalgesia is dependent on the peripheral domain of afferent input

Robert A.R. Drake; Richard P. Hulse; Bridget M. Lumb; Lucy F. Donaldson

Acute inflammation engages various descending control systems in the brain that alter the resulting inflammatory pain, usually by inhibiting it. In this study we looked at the differences in inhibition of acute (up to 3 h) inflammatory pain from smooth (glabrous) and hairy skin in the rat hind foot. In hairy skin, inflammatory pain is rapidly inhibited by descending systems that release noradrenaline, but not opiates, into the spinal cord. In glabrous skin, neither descending noradrenergic nor opioidergic controls affect inflammatory pain. These results tell us that the controls on the spinal processing of cutaneous inflammatory pain differ according to the skin type affected.


Molecular Pain | 2012

Differential roles of galanin on mechanical and cooling responses at the primary afferent nociceptor

Richard P. Hulse; Lucy F. Donaldson; David Wynick

BackgroundGalanin is expressed in a small percentage of intact small diameter sensory neurons of the dorsal root ganglia and in the afferent terminals of the superficial lamina of the dorsal horn of the spinal cord. The neuropeptide modulates nociception demonstrating dose-dependent pro- and anti-nociceptive actions in the naïve animal. Galanin also plays an important role in chronic pain, with the anti-nociceptive actions enhanced in rodent neuropathic pain models. In this study we compared the role played by galanin and its receptors in mechanical and cold allodynia by identifying individual rat C-fibre nociceptors and characterising their responses to mechanical or acetone stimulation.ResultsMechanically evoked responses in C-fibre nociceptors from naive rats were sensitised after close intra-arterial infusion of galanin or Gal2-11 (a galanin receptor-2/3 agonist) confirming previous data that galanin modulates nociception via activation of GalR2. In contrast, the same dose and route of administration of galanin, but not Gal2-11, inhibited acetone and menthol cooling evoked responses, demonstrating that this inhibitory mechanism is not mediated by activation of GalR2. We then used the partial saphenous nerve ligation injury model of neuropathic pain (PSNI) and the complete Freund’s adjuvant model of inflammation in the rat and demonstrated that close intra-arterial infusion of galanin, but not Gal2-11, reduced cooling evoked nociceptor activity and cooling allodynia in both paradigms, whilst galanin and Gal2-11 both decreased mechanical activation thresholds. A previously described transgenic mouse line which inducibly over-expresses galanin (Gal-OE) after nerve injury was then used to investigate whether manipulating the levels of endogenous galanin also modulates cooling evoked nociceptive behaviours after PSNI. Acetone withdrawal behaviours in naive mice showed no differences between Gal-OE and wildtype (WT) mice. 7-days after PSNI Gal-OE mice demonstrated a significant reduction in the duration of acetone-induced nociceptive behaviours compared to WT mice.ConclusionsThese data identify a novel galaninergic mechanism that inhibits cooling evoked neuronal activity and nociceptive behaviours via a putative GalR1 mode of action that would also be consistent with a TRP channel-dependent mechanism.


Clinical Science | 2017

Vascular endothelial growth factor-A165b ameliorates outer-retinal barrier and vascular dysfunction in the diabetic retina

Nikita Ved; Richard P. Hulse; Samuel M. Bestall; Lucy F. Donaldson; James W. Bainbridge; David O. Bates

Diabetic retinopathy (DR) is one of the leading causes of blindness in the developed world. Characteristic features of DR are retinal neurodegeneration, pathological angiogenesis and breakdown of both the inner and outer retinal barriers of the retinal vasculature and retinal pigmented epithelial (RPE)–choroid respectively. Vascular endothelial growth factor (VEGF-A), a key regulator of angiogenesis and permeability, is the target of most pharmacological interventions of DR. VEGF-A can be alternatively spliced at exon 8 to form two families of isoforms, pro- and anti-angiogenic. VEGF-A165a is the most abundant pro-angiogenic isoform, is pro-inflammatory and a potent inducer of permeability. VEGF-A165b is anti-angiogenic, anti-inflammatory, cytoprotective and neuroprotective. In the diabetic eye, pro-angiogenic VEGF-A isoforms are up-regulated such that they overpower VEGF-A165b. We hypothesized that this imbalance may contribute to increased breakdown of the retinal barriers and by redressing this imbalance, the pathological angiogenesis, fluid extravasation and retinal neurodegeneration could be ameliorated. VEGF-A165b prevented VEGF-A165a and hyperglycaemia-induced tight junction (TJ) breakdown and subsequent increase in solute flux in RPE cells. In streptozotocin (STZ)-induced diabetes, there was an increase in Evans Blue extravasation after both 1 and 8 weeks of diabetes, which was reduced upon intravitreal and systemic delivery of recombinant human (rh)VEGF-A165b. Eight-week diabetic rats also showed an increase in retinal vessel density, which was prevented by VEGF-A165b. These results show rhVEGF-A165b reduces DR-associated blood–retina barrier (BRB) dysfunction, angiogenesis and neurodegeneration and may be a suitable therapeutic in treating DR.

Collaboration


Dive into the Richard P. Hulse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David O. Bates

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikita Ved

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge