Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard P. Van Duyne is active.

Publication


Featured researches published by Richard P. Van Duyne.


Nature Materials | 2008

Biosensing with plasmonic nanosensors

Jeffrey N. Anker; W. Paige Hall; Olga Lyandres; Nilam C. Shah; Jing Zhao; Richard P. Van Duyne

Recent developments have greatly improved the sensitivity of optical sensors based on metal nanoparticle arrays and single nanoparticles. We introduce the localized surface plasmon resonance (LSPR) sensor and describe how its exquisite sensitivity to size, shape and environment can be harnessed to detect molecular binding events and changes in molecular conformation. We then describe recent progress in three areas representing the most significant challenges: pushing sensitivity towards the single-molecule detection limit, combining LSPR with complementary molecular identification techniques such as surface-enhanced Raman spectroscopy, and practical development of sensors and instrumentation for routine use and high-throughput detection. This review highlights several exceptionally promising research directions and discusses how diverse applications of plasmonic nanoparticles can be integrated in the near future.


Journal of Electroanalytical Chemistry | 1977

Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode

David L. Jeanmaire; Richard P. Van Duyne

Abstract In this work we have verified the remarkable sensitivity of Raman spectroscopy for the study of adsorbed pyridine on a silver surface, and extended its applicability to other nitrogen heterocycles and amines. New bands in the scattering spectrum of adsorbed pyridine have been characterized, which were not previously reported, as well as the Raman intensity response of all the surface pyridine bands as a function of electrode potential. As a result of these experiments, we have proposed a model of the adsorbed species for pyridine in which the adsorption is anion induced, leading to an axial end-on attachment to the electrode surface. The ability to obtain resonance Raman spectra with good signal-to-noise with laser powers less than 1.0 mW, reported here for the first time, opens up possibilities of surface Raman studies with relatively inexpensive laser systems. As laser power requirements are relaxed, reliability is improved, and greater tuning ranges can be achieved for wavelength dependent studies. We previously demonstrated the potential of resonance Raman spectroscopy for monitoring solution kinetic behavior [2], and now have shown that NR as well as RR spectroscopy has sufficient sensitivity to extend the studies of kinetic processes to include those occurring at electrode surfaces.


Reviews in Analytical Chemistry | 2008

Surface-Enhanced Raman Spectroscopy

Paul L. Stiles; Jon A. Dieringer; Nilam C. Shah; Richard P. Van Duyne

The ability to control the size, shape, and material of a surface has reinvigorated the field of surface-enhanced Raman spectroscopy (SERS). Because excitation of the localized surface plasmon resonance of a nanostructured surface or nanoparticle lies at the heart of SERS, the ability to reliably control the surface characteristics has taken SERS from an interesting surface phenomenon to a rapidly developing analytical tool. This article first explains many fundamental features of SERS and then describes the use of nanosphere lithography for the fabrication of highly reproducible and robust SERS substrates. In particular, we review metal film over nanosphere surfaces as excellent candidates for several experiments that were once impossible with more primitive SERS substrates (e.g., metal island films). The article also describes progress in applying SERS to the detection of chemical warfare agents and several biological molecules.


Journal of Vacuum Science and Technology | 1995

Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces

John C. Hulteen; Richard P. Van Duyne

In this article nanosphere lithography (NSL) is demonstrated to be a materials general fabrication process for the production of periodic particle array (PPA) surfaces having nanometer scale features. A variety of PPA surfaces have been prepared using identical single‐layer (SL) and double‐layer (DL) NSL masks made by self‐assembly of polymer nanospheres with diameter, D=264 nm, and varying both the substrate material S and the particle material M. In the examples shown here, S was an insulator, semiconductor, or metal and M was a metal, inorganic ionic insulator, or an organic π‐electron semiconductor. PPA structural characterization and determination of nanoparticle metrics was accomplished with atomic force microscopy. This is the first demonstration of nanometer scale PPA surfaces formed from molecular materials.


Materials Today | 2012

SERS: Materials, applications, and the future

Bhavya Sharma; Renee R. Frontiera; Anne Isabelle Henry; Emilie Ringe; Richard P. Van Duyne

Surface enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy technique that allows for highly sensitive structural detection of low concentration analytes through the amplification of electromagnetic fields generated by the excitation of localized surface plasmons. SERS has progressed from studies of model systems on roughened electrodes to highly sophisticated studies, such as single molecule spectroscopy. We summarize the current state of knowledge concerning the mechanism of SERS and new substrate materials. We highlight recent applications of SERS including sensing, spectroelectrochemistry, single molecule SERS, and real-world applications. We also discuss contributions to the field from the Van Duyne group. This review concludes with a discussion of future directions for this field including biological probing with UV-SERS, tip-enhanced Raman spectroscopy, and ultrafast SERS.


Analytical Chemistry | 2005

Surface-enhanced: Raman spectroscopy

Christy L. Haynes; Adam D. McFarland; Richard P. Van Duyne

New substrates and single-molecule detection are just two of the advances that are fueling interest in SERS.


Journal of Physical Chemistry B | 2004

A Nanoscale Optical Biosensor : The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles

Amanda J. Haes; Shengli Zou; George C. Schatz; Richard P. Van Duyne

Silver and gold nanotriangles were fabricated by nanosphere lithography (NSL) and their localized surface plasmon resonance (LSPR) spectra were measured by UV -vis extinction spectroscopy. It is demonstrated that the short range (viz., 0 -2 nm) distance dependence of the electromagnetic fields that surround these nanoparticles when resonantly excited can be systematically tuned by changing their size, structure, and composition. This is accomplished by measuring the shift in the peak wavelength, λmax, of their LSPR spectra caused by the adsorption of hexadecanethiol as a function of nanoparticle size (in-plane width, out-of-plane height, and aspect ratio), shape (truncated tetrahedron versus hemisphere), and composition (silver versus gold). We find that the hexadecanethiol-induced LSPR shift for Ag triangles decreases when in-plane width is increased at fixed out-of-plane height or when height is increased at fixed width. These trends are the opposite to what was seen in an earlier study of the long range distance dependence in which 30 nm thick layers were examined (Haes et al. J. Phys. Chem. B2004, 108, 109), but both the long and short range results are confirmed by a theoretical analysis based on finite element electrodynamics. The theory results also indicate that the short range results are primarily sensitive to hot spots (regions of high induced electric field) near the tips of the triangles, so this provides an example where enhanced local fields play an important role in extinction spectra. Our measurements further show that the hexadecanethiol-induced LSPR peak shift is larger for nanotriangles than for hemispheres with equal volumes and is larger for Ag nanotriangles than for Au nanotriangles with the same in-plane widths and out-of-plane heights. The dependence of the alkanethiolinduced LSPR peak shift on chain length for Ag nanotriangles is approximately size-independent. We anticipate that the improved understanding of the short range dependence of the adsorbate-induced LSPR peak shift on nanoparticle structure and composition reported here will translate to significant improvements in the sensitivity of refractive-index-based nanoparticle nanosensors.


Journal of the American Chemical Society | 2008

Probing the structure of single-molecule surface-enhanced Raman scattering hot spots.

Jon P. Camden; Jon A. Dieringer; Yingmin Wang; David J. Masiello; Lawrence D. Marks; George C. Schatz; Richard P. Van Duyne

We present here a detailed study of the specific nanoparticle structures that give rise to single-molecule surface-enhanced Raman scattering (SMSERS). A variety of structures are observed, but the simplest are dimers of Ag nanocrystals. We chose one of these structures for detailed study using electrodynamics calculations and found that the electromagnetic SERS enhancement factors of 10(9) are easily obtained and are consistent with single-molecule SERS activity.


Accounts of Chemical Research | 2008

Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing

Jon P. Camden; Jon A. Dieringer; Jing Zhao; Richard P. Van Duyne

After its discovery more than 30 years ago, surface-enhanced Raman spectroscopy (SERS) was expected to have major impact as a sensitive analytical technique and tool for fundamental studies of surface species. Unfortunately, the lack of reliable and reproducible fabrication methods limited its applicability. In recent years, SERS has enjoyed a renaissance, and there is renewed interest in both the fundamentals and applications of SERS. New techniques for nanofabrication, the design of substrates that maximize the electromagnetic enhancement, and the discovery of single-molecule SERS are driving the resurgence of this field. This Account highlights our groups recent work on SERS. Initially, we discuss SERS substrates that have shown proven reproducibility, stability, and large field enhancement. These substrates enable many analytical applications, such as anthrax detection, chemical warfare agent stimulant detection, and in vitro and in vivo glucose sensing. We then turn to a detailed study of the wavelength and distance dependence of SERS, which further illustrate predictions obtained from the electromagnetic enhancement mechanism. Last, an isotopic labeling technique applied to the rhodamine 6G (R6G)/silver system serves as an additional proof of the existence of single-molecule SERS and explores the dynamical features of this process. This work, in conjunction with theoretical calculations, allows us to comment on the possible role of charge transfer in the R6G/silver system.


Journal of the American Chemical Society | 2010

Structure−Activity Relationships in Gold Nanoparticle Dimers and Trimers for Surface-Enhanced Raman Spectroscopy

Kristin L. Wustholz; Anne Isabelle Henry; Jeffrey M. McMahon; R. Griffith Freeman; Nicholas Valley; Marcelo Eduardo Piotti; Michael J. Natan; George C. Schatz; Richard P. Van Duyne

Understanding the detailed relationship between nanoparticle structure and activity remains a significant challenge for the field of surface-enhanced Raman spectroscopy. To this end, the structural and optical properties of individual plasmonic nanoantennas comprised of Au nanoparticle assemblies that are coated with organic reporter molecules and encapsulated by a SiO(2) shell have been determined using correlated transmission electron microscopy (TEM), dark-field Rayleigh scattering microscopy, surface-enhanced Raman scattering (SERS) microscopy, and finite element method (FEM) calculations. The distribution of SERS enhancement factors (EFs) for a structurally and optically diverse set of nanoantennas is remarkably narrow. For a collection of 30 individual nanoantennas ranging from dimers to heptamers, the EFs vary by less than 2 orders of magnitude. Furthermore, the EFs for the hot-spot-containing nanoparticles are uncorrelated to aggregation state and localized surface plasmon resonance (LSPR) wavelength but are crucially dependent on the size of the interparticle gap. This study demonstrates that the creation of hot spots, where two particles are in subnanometer proximity or have coalesced to form crevices, is paramount to achieving maximum SERS enhancements.

Collaboration


Dive into the Richard P. Van Duyne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyu Zhang

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Zhao

University of Connecticut

View shared research outputs
Researchain Logo
Decentralizing Knowledge