Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard R. Neptune is active.

Publication


Featured researches published by Richard R. Neptune.


Journal of Biomechanics | 2001

Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking.

Richard R. Neptune; Steven A. Kautz; Felix E. Zajac

Walking is a motor task requiring coordination of many muscles. Previous biomechanical studies, based primarily on analyses of the net ankle moment during stance, have concluded different functional roles for the plantar flexors. We hypothesize that some of the disparities in interpretation arise because of the effects of the uniarticular and biarticular muscles that comprise the plantar flexor group have not been separated. Furthermore, we believe that an accurate determination of muscle function requires quantification of the contributions of individual plantar flexor muscles to the energetics of individual body segments. In this study, we examined the individual contributions of the ankle plantar flexors (gastrocnemius (GAS); soleus (SOL)) to the body segment energetics using a musculoskeletal model and optimization framework to generate a forward dynamics simulation of normal walking at 1.5 m/s. At any instant in the gait cycle, the contribution of a muscle to support and forward progression was defined by its contribution to trunk vertical and horizontal acceleration, respectively, and its contribution to swing initiation by the mechanical energy it delivers to the leg in pre-swing (i.e., double-leg stance prior to toe-off). GAS and SOL were both found to provide trunk support during single-leg stance and pre-swing. In early single-leg stance, undergoing eccentric and isometric activity, they accelerate the trunk vertically but decelerate forward trunk progression. In mid single-leg stance, while isometric, GAS delivers energy to the leg while SOL decelerates it, and SOL delivers energy to the trunk while GAS decelerates it. In late single-leg stance through pre-swing, though GAS and SOL both undergo concentric activity and accelerate the trunk forward while decelerating the downward motion of the trunk (i.e., providing forward progression and support), they execute different energetic functions. The energy produced from SOL accelerates the trunk forward, whereas GAS delivers almost all its energy to accelerate the leg to initiate swing. Although GAS and SOL maintain or accelerate forward motion in mid single-leg stance through pre-swing, other muscles acting at the beginning of stance contribute comparably to forward progression. In summary, throughout single-leg stance both SOL and GAS provide vertical support, in mid single-leg stance SOL and GAS have opposite energetic effects on the leg and trunk to ensure support and forward progression of both the leg and trunk, and in pre-swing only GAS contributes to swing initiation.


Gait & Posture | 2002

Biomechanics and muscle coordination of human walking: Part I: Introduction to concepts, power transfer, dynamics and simulations

Felix E. Zajac; Richard R. Neptune; Steven A. Kautz

Current understanding of how muscles coordinate walking in humans is derived from analyses of body motion, ground reaction force and EMG measurements. This is Part I of a two-part review that emphasizes how muscle-driven dynamics-based simulations assist in the understanding of individual muscle function in walking, especially the causal relationships between muscle force generation and walking kinematics and kinetics. Part I reviews the strengths and limitations of Newton-Euler inverse dynamics and dynamical simulations, including the ability of each to find the contributions of individual muscles to the acceleration/deceleration of the body segments. We caution against using the concept of biarticular muscles transferring power from one joint to another to infer muscle coordination principles because energy flow among segments, even the adjacent segments associated with the joints, cannot be inferred from computation of joint powers and segmental angular velocities alone. Rather, we encourage the use of dynamical simulations to perform muscle-induced segmental acceleration and power analyses. Such analyses have shown that the exchange of segmental energy caused by the forces or accelerations induced by a muscle can be fundamentally invariant to whether the muscle is shortening, lengthening, or neither. How simulation analyses lead to understanding the coordination of seated pedaling, rather than walking, is discussed in this first part because the dynamics of pedaling are much simpler, allowing important concepts to be revealed. We elucidate how energy produced by muscles is delivered to the crank through the synergistic action of other non-energy producing muscles; specifically, that a major function performed by a muscle arises from the instantaneous segmental accelerations and redistribution of segmental energy throughout the body caused by its force generation. Part II reviews how dynamical simulations provide insight into muscle coordination of walking.


Gait & Posture | 2003

Biomechanics and muscle coordination of human walking. Part II: Lessons from dynamical simulations and clinical implications

Felix E. Zajac; Richard R. Neptune; Steven A. Kautz

Principles of muscle coordination in gait have been based largely on analyses of body motion, ground reaction force and EMG measurements. However, data from dynamical simulations provide a cause-effect framework for analyzing these measurements; for example, Part I (Gait Posture, in press) of this two-part review described how force generation in a muscle affects the acceleration and energy flow among the segments. This Part II reviews the mechanical and coordination concepts arising from analyses of simulations of walking. Simple models have elucidated the basic multisegmented ballistic and passive mechanics of walking. Dynamical models driven by net joint moments have provided clues about coordination in healthy and pathological gait. Simulations driven by muscle excitations have highlighted the partial stability afforded by muscles with their viscoelastic-like properties and the predictability of walking performance when minimization of metabolic energy per unit distance is assumed. When combined with neural control models for exciting motoneuronal pools, simulations have shown how the integrative properties of the neuro-musculo-skeletal systems maintain a stable gait. Other analyses of walking simulations have revealed how individual muscles contribute to trunk support and progression. Finally, we discuss how biomechanical models and simulations may enhance our understanding of the mechanics and muscle function of walking in individuals with gait impairments.


Journal of Neurophysiology | 2010

Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke

David J. Clark; Lena H. Ting; Felix E. Zajac; Richard R. Neptune; Steven A. Kautz

Evidence suggests that the nervous system controls motor tasks using a low-dimensional modular organization of muscle activation. However, it is not clear if such an organization applies to coordination of human walking, nor how nervous system injury may alter the organization of motor modules and their biomechanical outputs. We first tested the hypothesis that muscle activation patterns during walking are produced through the variable activation of a small set of motor modules. In 20 healthy control subjects, EMG signals from eight leg muscles were measured across a range of walking speeds. Four motor modules identified through nonnegative matrix factorization were sufficient to account for variability of muscle activation from step to step and across speeds. Next, consistent with the clinical notion of abnormal limb flexion-extension synergies post-stroke, we tested the hypothesis that subjects with post-stroke hemiparesis would have altered motor modules, leading to impaired walking performance. In post-stroke subjects (n = 55), a less complex coordination pattern was shown. Fewer modules were needed to account for muscle activation during walking at preferred speed compared with controls. Fewer modules resulted from merging of the modules observed in healthy controls, suggesting reduced independence of neural control signals. The number of modules was correlated to preferred walking speed, speed modulation, step length asymmetry, and propulsive asymmetry. Our results suggest a common modular organization of muscle coordination underlying walking in both healthy and post-stroke subjects. Identification of motor modules may lead to new insight into impaired locomotor coordination and the underlying neural systems.


Gait & Posture | 2004

Muscle force redistributes segmental power for body progression during walking.

Richard R. Neptune; Felix E. Zajac; Steven A. Kautz

The ankle plantar flexors were previously shown to support the body in single-leg stance to ensure its forward progression [J. Biomech. 34 (2001) 1387]. The uni- (SOL) and biarticular (GAS) plantar flexors accelerated the trunk and leg forward, respectively, with each opposing the effect of the other. Around mid-stance their net effect on the trunk and the leg was negligible, consistent with the body acting as an inverted pendulum. In late stance, their net effect was to accelerate the leg and trunk forward, consistent with an active push-off. Because other muscles are active in the beginning and end of stance, we hypothesized that their active concentric and eccentric force generation also supports the body and redistributes segmental power to enable body forward progression. Muscle-actuated forward dynamical simulations that emulated observed walking kinematics and kinetics of young adult subjects were analyzed to quantify muscle contributions to the vertical and horizontal ground reaction force, and to the acceleration and mechanical power of the leg and trunk. The eccentric uniarticular knee extensors (vasti, VAS) and concentric uniarticular hip extensors (gluteus maximus, GMAX) were found to provide critical support to the body in the beginning of stance, before the plantar flexors became active. VAS also decelerated the forward motion of both the trunk and the leg. Afterwards when VAS shortens in mid-stance, it delivered the power produced to accelerate the trunk and also redistributed segmental power to the trunk by continuing to decelerate the leg. When present, rectus femoris (RF) activity in the beginning of stance had a minimal effect. But in late stance the lengthening RF accelerated the knee and hip into extension, which opposed swing initiation. Though RF was lengthening, it still accelerated the trunk forward by decelerating the leg and redistributing the leg segmental power to the trunk, as SOL does though it is shortening instead of lengthening. Force developed from highly stretched passive hip structures and active force produced by the uniarticular hip flexors assisted GAS in swing initiation. Hamstrings (HAM) decelerated the leg in late swing while lengthening and accelerated the leg in the beginning of stance while shortening. We conclude that the uniarticular knee and hip extensor muscles are critical to body support in the beginning of stance and redistribution of segmental power by muscles throughout the gait cycle is critical to forward progression of the trunk and legs.


Journal of Biomechanics | 2000

The influence of foot positioning on ankle sprains

Ian Wright; Richard R. Neptune; A.J. van den Bogert; Benno M. Nigg

The goal of this study was to examine the influence of changes in foot positioning at touch-down on ankle sprain occurrence. Muscle model driven computer simulations of 10 subjects performing the landing phase of a side-shuffle movement were performed. The relative subtalar joint and talocural joint angles at touchdown were varied, and each subject-specific simulation was exposed to a set of perturbed floor conditions. The touchdown subtalar joint angle was not found to have a considerable influence on sprain occurrence, while increased touchdown plantar flexion caused increased ankle sprain occurrences. Increased touchdown plantar flexion may be the mechanism which causes ankles with a history of ankle sprains to have an increased susceptibility to subsequent sprains. This finding may also reveal a mechanism by which taping of a sprained ankle or the application of an ankle brace leads to decreased ankle sprain susceptibility.


Journal of Biomechanics | 1997

The effect of pedaling rate on coordination in cycling

Richard R. Neptune; Steven A. Kautz; Maury L. Hull

To further understand lower extremity neuromuscular coordination in cycling, the objectives of this study were to examine the effect of pedaling rate on coordination strategies and interpret any apparent changes. These objectives were achieved by collecting electromyography (EMG) data of eight lower extremity muscles and crank angle data from ten subjects at 250 W across pedaling rates ranging from 45 to 120 RPM. To examine the effect of pedaling rate on coordination, EMG burst onset and offset and integrated EMG (iEMG) were computed. In addition, a phase-controlled functional group (PCFG) analysis was performed to interpret observed changes in the EMG patterns in the context of muscle function. Results showed that the EMG onset and offset systematically advanced as pedaling rate increased except for the soleus which shifted later in the crank cycle. The iEMG results revealed that muscles responded differently to increased pedaling rate. The gastrocnemius, hamstring muscles and vastus medialis systematically increased muscle activity as pedaling rate increased. The gluteus maximus and soleus had significant quadratic trends with minimum values at 90 RPM, while the tibialis anterior and rectus femoris showed no significant association with pedaling rate. The PCFG analysis showed that the primary function of each lower extremity muscle remained the same at all pedaling rates. The PCFG analysis, which accounts for muscle activation dynamics, revealed that the earlier onset of muscle excitation produced muscle activity in the same region of the crank cycle. Also, while most of the muscles were excited for a single functional phase, the soleus and rectus femoris were excited during two functional phases. The soleus was classified as an extensor-bottom transition muscle, while the rectus femoris was classified as a top transition-extensor muscle. Further, the relative emphasis of each function appeared to shift as pedaling rate was increased, although each muscle remained bifunctional.


Stroke | 2006

Anterior-Posterior Ground Reaction Forces as a Measure of Paretic Leg Contribution in Hemiparetic Walking

Mark G. Bowden; Chitralakshmi K. Balasubramanian; Richard R. Neptune; Steven A. Kautz

Background and Purpose— Walking after stroke is characterized by slow gait speed, poor endurance, reduced quality and adaptability of walking patterns, and an inability to coordinate the legs. Estimates based on mechanical work calculations have suggested that the paretic leg does 30% to 40% of the total mechanical work over the gait cycle, regardless of hemiparetic severity, but these work estimates may not describe the contribution of each leg to forward propulsion. The purpose of this study was to establish a quantifiable link between hemiparetic severity and paretic leg contribution to propulsion during walking, which we propose to quantify using a measure based on the anterior-posterior ground reaction forces (A-P GRFs). Methods— A total of 47 participants with chronic hemiparesis walked at self-selected speeds to collect spatiotemporal parameters and 3D GRFs. A 16-person subset also participated in a pedaling protocol to compare A-P GRF measures to established measures of paretic leg output. Results— A-P GRF measures were correlated with both walking speed and hemiparetic severity. These measures were also strongly correlated with positive work and net work values obtained during the pedaling task. The percentage of total propulsion generated by the paretic leg (PP) was calculated and found to be 16%, 36%, and 49% for those with high, moderate, and low hemiparetic severity, respectively. Conclusion— PP was found to provide a quantitative measure of the coordinated output of the paretic leg. Further research on this measure of forward propulsion may lead to the provision of an effective tool for distinguishing functional compensation from physiological restitution.


Medicine and Science in Sports and Exercise | 2000

Cadence, power, and muscle activation in cycle ergometry

Brian R. MacIntosh; Richard R. Neptune; John F. Horton

PURPOSE Based on the resistance-rpm relationship for cycling, which is not unlike the force-velocity relationship of muscle, it is hypothesized that the cadence which requires the minimal muscle activation will be progressively higher as power output increases. METHODS To test this hypothesis, subjects were instrumented with surface electrodes placed over seven muscles that were considered to be important during cycling. Measurements were made while subjects cycled at 100, 200, 300, and 400 W at each cadence: 50, 60, 80, 100, and 120 rpm. These power outputs represented effort which was up to 32% of peak power output for these subjects. RESULTS When all seven muscles were averaged together, there was a proportional increase in EMG amplitude each cadence as power increased. A second-order polynomial equation fit the EMG:cadence results very well (r2 = 0.87- 0.996) for each power output. Optimal cadence (cadence with lowest amplitude of EMG for a given power output) increased with increases in power output: 57 +/- 3.1, 70 +/- 3.7, 86 +/- 7.6, and 99 +/- 4.0 rpm for 100, 200, 300, and 400 W, respectively. CONCLUSION The results confirm that the level of muscle activation varies with cadence at a given power output. The minimum EMG amplitude occurs at a progressively higher cadence as power output increases. These results have implications for the sense of effort and preferential use of higher cadences as power output is increased.


The Journal of Experimental Biology | 2005

Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed

Richard R. Neptune; Kotaro Sasaki

SUMMARY The mechanisms that govern the voluntary transition from walking to running as walking speed increases in human gait are not well understood. The objective of this study was to examine the hypothesis that plantar flexor muscle force production is greatly impaired at the preferred transition speed (PTS) due to intrinsic muscle properties and, thus, serves as a determinant for the walk-to-run transition. The plantar flexors have been shown to be important contributors to satisfying the mechanical energetic demands of walking and are the primary contributors to the observed ground reaction forces (GRFs) during the propulsion phase. Thus, if the plantar flexor force production begins to diminish near the PTS despite an increase in muscle activation, then a corresponding decrease in the GRFs during the propulsion phase would be expected. This expectation was supported. Both the peak anterior/posterior and vertical GRFs decreased during the propulsion phase at walking speeds near the PTS. A similar decrease was not observed during the braking phase. Further analysis using forward dynamics simulations of walking at increasing speeds and running at the PTS revealed that all lower extremity muscle forces increased with walking speed, except the ankle plantar flexors. Despite an increase in muscle activation with walking speed, the gastrocnemius muscle force decreased with increasing speed, and the soleus force decreased for walking speeds exceeding 80% PTS. These decreases in force production were attributed to the intrinsic force–length–velocity properties of muscle. In addition, the running simulation analysis revealed that the plantar flexor forces nearly doubled for similar activation levels when the gait switched to a run at the PTS due to improved contractile conditions. These results suggest the plantar flexors may serve as an important determinant for the walk-to-run transition and highlight the important role intrinsic muscle properties play in determining the specific neuromotor strategies used in human locomotion.

Collaboration


Dive into the Richard R. Neptune's collaboration.

Top Co-Authors

Avatar

Steven A. Kautz

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Glenn K. Klute

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason M. Wilken

San Antonio Military Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mark G. Bowden

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kotaro Sasaki

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Maury L. Hull

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge