Richard R. Sprenger
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard R. Sprenger.
Molecular & Cellular Proteomics | 2013
Ileana R. León; Veit Schwämmle; Ole Nørregaard Jensen; Richard R. Sprenger
The majority of mass spectrometry-based protein quantification studies uses peptide-centric analytical methods and thus strongly relies on efficient and unbiased protein digestion protocols for sample preparation. We present a novel objective approach to assess protein digestion efficiency using a combination of qualitative and quantitative liquid chromatography-tandem MS methods and statistical data analysis. In contrast to previous studies we employed both standard qualitative as well as data-independent quantitative workflows to systematically assess trypsin digestion efficiency and bias using mitochondrial protein fractions. We evaluated nine trypsin-based digestion protocols, based on standard in-solution or on spin filter-aided digestion, including new optimized protocols. We investigated various reagents for protein solubilization and denaturation (dodecyl sulfate, deoxycholate, urea), several trypsin digestion conditions (buffer, RapiGest, deoxycholate, urea), and two methods for removal of detergents before analysis of peptides (acid precipitation or phase separation with ethyl acetate). Our data-independent quantitative liquid chromatography-tandem MS workflow quantified over 3700 distinct peptides with 96% completeness between all protocols and replicates, with an average 40% protein sequence coverage and an average of 11 peptides identified per protein. Systematic quantitative and statistical analysis of physicochemical parameters demonstrated that deoxycholate-assisted in-solution digestion combined with phase transfer allows for efficient, unbiased generation and recovery of peptides from all protein classes, including membrane proteins. This deoxycholate-assisted protocol was also optimal for spin filter-aided digestions as compared with existing methods.
Acta Paediatrica | 2008
Johannes M. F. G. Aerts; Mariëlle J. van Breemen; Anton P. Bussink; Karen Ghauharali; Richard R. Sprenger; Rolf G. Boot; Johanna E. M. Groener; C. E. M. Hollak; Mario Maas; Suzanne Smit; Huub C. J. Hoefsloot; Age K. Smilde; Johannes P. C. Vissers; Sheryas De Jong; Dave Speijer; Chris G. de Koster
A biomarker is an analyte that indicates the presence of a biological process linked to the clinical manifestations and outcome of a particular disease. An ideal biomarker provides indirect but ongoing determinations of disease activity. In the case of lysosomal storage disorders (LSDs), metabolites or proteins specifically secreted by storage cells are good candidates for biomarkers. Potential clinical applications of biomarkers are found in improved diagnosis, monitoring of disease progression and assessment of therapeutic correction. These applications are illustrated by reviewing the use of plasma chitotriosidase in the clinical management of patients with Gaucher disease, the most common LSD. The ongoing debate on the value of biomarkers in patient management is addressed. Novel analytical methods have revolutionized the identification and measurement of biomarkers at the protein and metabolite level. Recent developments in biomarker discovery by proteomics are described and the future for biomarkers of LSDs is discussed.
Chemistry & Biology | 2015
Albert Casanovas; Richard R. Sprenger; Kirill V. Tarasov; David E. Ruckerbauer; Hans Kristian Hannibal-Bach; Jürgen Zanghellini; Ole Nørregaard Jensen; Christer S. Ejsing
Elucidating how and to what extent lipid metabolism is remodeled under changing conditions is essential for understanding cellular physiology. Here, we analyzed proteome and lipidome dynamics to investigate how regulation of lipid metabolism at the global scale supports remodeling of cellular architecture and processes during physiological adaptations in yeast. Our results reveal that activation of cardiolipin synthesis and remodeling supports mitochondrial biogenesis in the transition from fermentative to respiratory metabolism, that down-regulation of de novo sterol synthesis machinery prompts differential turnover of lipid droplet-associated triacylglycerols and sterol esters during respiratory growth, that sphingolipid metabolism is regulated in a previously unrecognized growth stage-specific manner, and that endogenous synthesis of unsaturated fatty acids constitutes an in vivo upstream activator of peroxisomal biogenesis, via the heterodimeric Oaf1/Pip2 transcription factor. Our work demonstrates the pivotal role of lipid metabolism in adaptive processes and provides a resource to investigate its regulation at the cellular level.
The ISME Journal | 2014
Celia Méndez-García; Victoria Mesa; Richard R. Sprenger; Michael Richter; María Suárez Diez; Jennifer Solano; Rafael Bargiela; Olga V. Golyshina; Angel Manteca; Juan L. Ramos; J.R. Gallego; Irene Llorente; Vitor A. P. Martins dos Santos; Ole Nørregaard Jensen; Ana I. Peláez; Jesus Sanchez; Manuel Ferrer
Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN’ (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN’-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths.
Molecular & Cellular Proteomics | 2009
Gertjan Kramer; Richard R. Sprenger; JaapWillem Back; Henk L. Dekker; Merel A. Nessen; Jan H. van Maarseveen; Leo J. de Koning; Klaas J. Hellingwerf; Luitzen de Jong; Chris G. de Koster
A method is presented to identify and quantify several hundreds of newly synthesized proteins in Escherichia coli upon pulse labeling cells with the methionine analogue azidohomoalanine (azhal). For the first 30 min after inoculation, a methionine-auxotrophic strain grows equally well on azhal as on methionine. Upon a pulse of 15 min and digestion of total protein, azhal-labeled peptides are isolated by a retention time shift between two reversed phase chromatographic runs. The retention time shift is induced by a reaction selective for the azido group in labeled peptides using tris(2-carboxyethyl)phosphine. Selectively modified peptides are identified by reversed phase liquid chromatography and on-line tandem mass spectrometry. We identified 527 proteins representative of all major Gene Ontology categories. Comparing the relative amounts of 344 proteins synthesized in 15 min upon a switch of growth temperature from 37 to 44 °C showed that nearly 20% increased or decreased more than 2-fold. Among the most up-regulated proteins many were chaperones and proteases in accordance with the cells response to unfolded proteins due to heat stress. Comparison of our data with results from previous microarray experiments revealed the importance of regulation of gene expression at the level of transcription of the most elevated proteins under heat shock conditions and enabled identification of several candidate genes whose expression may predominantly be regulated at the level of translation. This work demonstrates for the first time the use of a bioorthogonal amino acid for proteome-wide detection of changes in the amounts of proteins synthesized during a brief period upon variations in cellular growth conditions. Comparison of such data with relative mRNA levels enables assessment of the separate contributions of transcription and translation to the regulation of gene expression.
Molecular & Cellular Proteomics | 2010
Gertjan Kramer; Richard R. Sprenger; Merel A. Nessen; Winfried Roseboom; Dave Speijer; Luitzen de Jong; M. Joost Teixeira de Mattos; JaapWillem Back; Chris G. de Koster
Enzyme reprofiling in bacteria during adaptation from one environmental condition to another may be regulated by both transcription and translation. However, little is known about the contribution of translational regulation. Recently, we have developed a pulse labeling method using the methionine analog azidohomoalanine to determine the relative amounts of proteins synthesized by Escherichia coli in a brief time frame upon a change in environmental conditions. Here we present an extension of our analytical strategy, which entails measuring changes in total protein levels on the same time scale as new protein synthesis. This allows identification of stable and labile proteins and demonstrates that altered levels of most newly synthesized proteins are the result of a change in translation rate rather than degradation rate. With this extended strategy, average relative translation rates for 10 min immediately after a switch from aerobiosis to anaerobiosis were determined. The majority of proteins with increased synthesis rates upon an anaerobic switch are involved in glycolysis and pathways aimed at preventing glycolysis grinding to a halt by a cellular redox imbalance. Our method can be used to compare relative translation rates with relative mRNA levels at the same time. Discrepancies between these parameters may reveal genes whose expression is regulated by translation rather than by transcription. This may help unravel molecular mechanism underlying changes in translation rates, e.g. mediated by small regulatory RNAs.
Expert Review of Proteomics | 2009
Rolf G. Boot; Mariëlle J. van Breemen; Wouter Wegdam; Richard R. Sprenger; Shreyas de Jong; Dave Speijer; Carla E. M. Hollak; Laura van Dussen; Huub C. J. Hoefsloot; Age K. Smilde; Chris G. de Koster; Johannes P. C. Vissers; Johannes M. F. G. Aerts
Gaucher disease is an inherited lysosomal storage disorder, characterized by massive accumulation of glucosylceramide-laden macrophages in the spleen, liver and bone marrow as a consequence of deficient activity of glucocerebrosidase. Gaucher disease has been the playground to develop new therapeutic interventions such as enzyme-replacement therapy and substrate-reduction therapy. The availability of these costly therapies has stimulated research regarding suitable biomarkers to monitor onset and progression of disease, as well as the efficacy of therapeutic intervention. Given the important role of storage cells in the pathology, various attempts have been made to identify proteins in plasma or serum reflecting the body burden of these pathological cells. In this review, the existing data regarding biomarkers for Gaucher disease, as well as the current application of biomarkers in clinical management of Gaucher patients are discussed. Moreover, the use of several modern proteomic technologies for the identification of Gaucher biomarkers is reviewed.
Proteomics | 2010
Richard R. Sprenger; Ole Nørregaard Jensen
Quo Vadis: Where are you going?
Journal of Proteomics | 2013
Krzysztof Wrzesinski; Ileana R. León; Katarzyna Kulej; Richard R. Sprenger; Bodil Bjørndal; Bjørn Jostein Christensen; Rolf K. Berge; Ole Nørregaard Jensen; Adelina Rogowska-Wrzesinska
UNLABELLED Fish oil (FO) and tetradecylthioacetic acid (TTA) - a synthetic modified fatty acid have beneficial effects in regulating lipid metabolism. In order to dissect the mechanisms underlying the molecular action of those two fatty acids we have investigated the changes in mitochondrial protein expression in a long-term study (50weeks) in male Wistar rats fed 5 different diets. The diets were as follows: low fat diet; high fat diet; and three diets that combined high fat diet with fish oil, TTA or combination of those two as food supplements. We used two different proteomics techniques: a protein centric based on 2D gel electrophoresis and mass spectrometry, and LC-MS(E) based peptide centric approach. As a result we provide evidence that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate that fatty acid metabolism; lipid oxidation, amino acid metabolism and oxidative phosphorylation pathways are involved in fish oil and TTA action. Evidence for the involvement of PPAR mediated signalling is provided. Additionally we postulate that down regulation of components of complexes I and II contributes to the strong antioxidant properties of TTA. BIOLOGICAL SIGNIFICANCE This study for the first time explores the effect of fish oil and TTA - tetradecyl-thioacetic acid and the combination of those two as diet supplements on mitochondria metabolism in a comprehensive and systematic manner. We show that fish oil and TTA modulate mitochondrial metabolism in a synergistic manner yet the effects of TTA are much more dramatic. We demonstrate in a large scale that fatty acid metabolism and lipid oxidation are affected by fish oil and TTA, a phenomenon already known from more directed molecular biology studies. Our approach, however, shows additionally that amino acid metabolism and oxidative phosphorylation pathways are also strongly affected by TTA and also to some extent by fish oil administration. Strong evidence for the involvement of PPAR mediated signalling is provided linking the different metabolic effects. The global and systematic viewpoint of this study compiles many of the known phenomena related to the effects of fish oil and fatty acids giving a solid foundation for further exploratory and more directed studies of the mechanisms behind the beneficial and detrimental effects of fish oil and TTA diet supplementation. This work is already a second article in a series of studies conducted using this model of dietary intervention. In the previous study (Vigerust et al., [21]) the effects of fish oil and TTA on the plasma lipids and cholesterol levels as well as key metabolic enzymes in the liver have been studied. In an ongoing study more work is being done to explore in detail for example the link between the down regulation of the components of the respiratory chain (observed in this study) and the strong antioxidant effects of TTA. The reference diet in this study has been designed to mimic an unhealthy - high fat diet that is thought to contribute to the development of metabolic syndrome - a condition that is strongly associated with diabetes, obesity and heart failure. Fish oil and TTA are known to have beneficial effects for the fatty acid metabolism and have been shown to alleviate some of the symptoms of the metabolic syndrome. To date very little is known about the molecular mechanisms behind these beneficial effects and the potential pitfalls of the consumption of those two compounds. Only studies of each compound separately and using only small scale molecular biology approaches have been carried out. The results of this work provide an excellent starting point for further studies that will help to understand the metabolic effects of fish oil and TTA and will hopefully help to design dietary programs directed towards reduction of the prevalence of metabolic syndrome and associated diseases.
Journal of Proteome Research | 2013
Fedor Kryuchkov; Thiago Verano-Braga; Thomas Aarup Hansen; Richard R. Sprenger; Frank Kjeldsen
A cornerstone of mass spectrometry based proteomics is to relate with high statistical significance experimentally obtained tandem mass spectrometry (MS/MS) data to peptide sequences from a protein database. Most sequence specific fragment ions in MS/MS spectra are represented by a subset of complementary ion pairs. Here, we investigated the reliabilities of complementary ion pairs formed in CAD and CAD/ETD MS/MS and developed a reliability-based approach of intensification of ion signals of complementary pairs prior to database searching. In a large-scale proteomics experiment using high-resolution orbitrap mass spectrometry, an increase in the number of peptide identifications was obtained relative to the original CAD MS/MS spectra when intensified golden complementary (+18.6%) and CAD complementary pairs (+17.2%) were submitted to the Mascot search engine. This also exceeded the results obtained by deisotoping/deconvolution of CAD MS/MS spectra. A novel approach for extracting sequence-specific fragment ions of co-isolated peptides was developed based on the complementarity rules. This technique demonstrated an impressive gain of 42.4% more peptide identifications as compared with the use of the initial data set.