Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard R. Vaillancourt is active.

Publication


Featured researches published by Richard R. Vaillancourt.


Current Opinion in Cell Biology | 1994

Sequential protein kinase reactions controlling cell growth and differentiation

Gary L. Johnson; Richard R. Vaillancourt

Sequential protein kinase reactions involve the phosphorylation and activation of multiple kinases in a pathway. The growth factor receptor tyrosine kinase regulation of the mitogen-activated protein kinase (MAPK) pathway was defined in 1993. The MAPK pathway involves sequential protein kinase reactions. Notable advances were made in defining tyrosine kinase receptor regulation of Ras, and these discoveries were combined with the identification of Raf-1, a serine-threonine protein kinase in the MAPK pathway, as an effector for Ras GTP.


Oncogene | 1998

Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis

Amy C. Porter; Richard R. Vaillancourt

Oncogenesis is a complicated process involving signal transduction pathways that mediate many different physiological events. Typically, oncogenes cause unregulated cell growth and this phenotype has been attributed to the growth-stimulating activity of oncogenes such as ras and src. In recent years, much research effort has focused on proteins that function downstream of Ras, leading to the identification of the Ras/Raf/MAPK pathway, because activation of this pathway leads to cellular proliferation. Activated receptor tyrosine kinases (RTKs) also utilize this pathway to mediate their growth-stimulating effects. However, RTKs activate many other signaling proteins that are not involved in the cellular proliferation process, per se and we are learning that these pathways also contribute to the oncogenic process. In fact, RTKs and many of the proteins involved in RTK-dependent signal transduction can also function as oncogenes. For example, the catalytic subunit of phosphoinositide 3-kinase (PI3-K) was recently identified as an oncogenic protein. The scope of pathways that are activated by oncogenic RTKs is expanding. Thus, not only do RTKs activate Ras-dependent pathways that drive proliferation, RTKs activate PI3-K-dependent pathways which also contribute to the oncogenic mechanism. PI3-K can initiate changes in gene transcription, cytoskeletal changes through β-catenin, changes in cell motility through the tumor suppressor, adenomatous polyposis coli (APC), and phosphorylation of BAD, a protein involved in apoptotic and anti-apoptotic signaling. There is also cross-talk between RTKs and the oncostatin cytokine receptor which may positively and negatively influence oncogenesis. For this review, we will focus on oncogenic RTKs and the network of cellular proteins that are activated by RTKs because multiple, divergent pathways are responsible for oncogenesis.


Molecular and Cellular Biology | 1994

B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP.

Richard R. Vaillancourt; Anne M. Gardner; Gary L. Johnson

Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.


Journal of Biological Chemistry | 2002

Signal Transduction from N-cadherin Increases Bcl-2 REGULATION OF THE PHOSPHATIDYLINOSITOL 3-KINASE/Akt PATHWAY BY HOMOPHILIC ADHESION AND ACTIN CYTOSKELETAL ORGANIZATION

Nhan L. Tran; Deanna G. Adams; Richard R. Vaillancourt; Ronald L. Heimark

Associated with the metastatic progression of epithelial tumors is the dynamic regulation of cadherins. Whereas E-cadherin is expressed in most epithelium and carcinomas, recent studies suggest that the up-regulation of other cadherin subtypes in carcinomas, such as N-cadherin, may function in cancer progression. We demonstrate that a signal transduction cascade links the N-cadherin·catenin adhesion complex to up-regulation of the anti-apoptotic protein Bcl-2. In suspension, aggregates of DU-145 cells, an E-cadherin expressing human prostate carcinoma line, survive loss of integrin-dependent adhesion by a different anti-apoptotic signaling pathway than the N-cadherin expressing lines PC3 and PC3N. N-cadherin intercellular adhesion mediates a 3.5-fold increase in Bcl-2 protein expression, whereas the level of the proapoptotic protein Bax remains constant. Only N-cadherin ligation in PC3 cells, which express both N-cadherin and E-cadherin, is sufficient to induce activation of Akt/protein kinase B. N-cadherin homophilic ligation initiates phosphatidylinositol 3-kinase-dependent activation of Akt resulting in Akt phosphorylation of Bad on serine 136. Following N-cadherin homophilic adhesion phosphatidylinositol 3-kinase was identified in immunoprecipitates of the N-cadherin·catenin complex. The recruitment of phosphatidylinositol 3-kinase to the adhesion complex is dependent on ligation of N-cadherin and an organized actin cytoskeleton because cytochalasin D blocks the recruitment. We propose that N-cadherin homophilic adhesion can initiate anti-apoptotic signaling, which enhances the Akt cell survival pathway in metastatic cancer.


Molecular and Cellular Biology | 1995

Mitogen-activated protein kinase activation is insufficient for growth factor receptor-mediated PC12 cell differentiation.

Richard R. Vaillancourt; Lynn E. Heasley; J Zamarripa; M Valius; Andrius Kazlauskas; Gary L. Johnson

When expressed in PC12 cells, the platelet-derived growth factor beta receptor (beta PDGF-R) mediates cell differentiation. Mutational analysis of the beta PDGF-R indicated that persistent receptor stimulation of the Ras/Raf/mitogen-activated protein (MAP) kinase pathway alone was insufficient to sustain PC12 cell differentiation. PDGF receptor activation of signal pathways involving p60c-src or the persistent regulation of phospholipase C gamma was required for PC12 cell differentiation. beta PDGF-R regulation of phosphatidylinositol 3-kinase, the GTPase-activating protein of Ras, and the tyrosine phosphatase, Syp, was not required for PC12 cell differentiation. In contrast to overexpression of oncoproteins involved in regulating the MAP kinase pathway, growth factor receptor-mediated differentiation of PC12 cells requires the integration of other signals with the Ras/Raf/MAP kinase pathway.


Molecular and Cellular Biology | 2003

The death domain kinase RIP1 is essential for tumor necrosis factor alpha signaling to p38 mitogen-activated protein kinase.

Thomas Lee; Qiaojia Huang; Sarah Oikemus; Jennifer Shank; Juan Jose Ventura; Nicole Cusson; Richard R. Vaillancourt; Bing Su; Roger J. Davis; Michelle A. Kelliher

ABSTRACT The cytokine tumor necrosis factor alpha (TNF-α) stimulates the NF-κB, SAPK/JNK, and p38 mitogen-activated protein (MAP) kinase pathways by recruiting RIP1 and TRAF2 proteins to the tumor necrosis factor receptor 1 (TNFR1). Genetic studies have revealed that RIP1 links the TNFR1 to the IκB kinase (IKK) complex, whereas TRAF2 couples the TNFR1 to the SAPK/JNK cascade. In transfection studies, RIP1 and TRAF2 stimulate p38 MAP kinase activation, and dominant-negative forms of RIP1 and TRAF2 inhibit TNF-α-induced p38 MAP kinase activation. We found TNF-α-induced p38 MAP kinase activation and interleukin-6 (IL-6) production impaired in rip1 −/− murine embryonic fibroblasts (MEF) but unaffected in traf2−/− MEF. Yet, both rip1 −/− and traf2 −/− MEF exhibit a normal p38 MAP kinase response to inducers of osmotic shock or IL-1α. Thus, RIP1 is a specific mediator of the p38 MAP kinase response to TNF-α. These studies suggest that TNF-α-induced activation of p38 MAP kinase and SAPK/JNK pathways bifurcate at the level of RIP1 and TRAF2. Moreover, endogenous RIP1 associates with the MAP kinase kinase kinase (MAP3K) MEKK3 in TNF-α-treated cells, and decreased TNF-α-induced p38 MAP kinase activation is observed in Mekk3 −/− cells. Taken together, these studies suggest a mechanism whereby RIP1 may mediate the p38 MAP kinase response to TNF-α, by recruiting the MAP3K MEKK3.


Developmental Dynamics | 2008

MAP3Ks as central regulators of cell fate during development

Evisabel A. Craig; Mark V. Stevens; Richard R. Vaillancourt; Todd D. Camenisch

The cytoplasmic serine/threonine kinases transduce extracellular signals into regulatory events that impact cellular responses. The induction of one kinase triggers the activation of several downstream kinases, leading to the regulation of transcription factors to affect gene function. This arrangement allows for the kinase cascade to be amplified, and integrated according to the cellular context. An upstream mitogen or growth factor signal initiates a module of three kinases: a mitogen‐activated protein (MAP) kinase kinase kinase (MAPKKK; e.g., Raf) that phosphorylates and activates a MAP kinase kinase (MAPKK; e.g., MEK) and finally activation of MAP kinase (MAPK; e.g., ERK). Thus, this MAP3K‐MAP2K‐MAPK module represents critical effectors that regulate extracellular stimuli into cellular responses, such as differentiation, proliferation, and apoptosis all of which function during development. There are 21 characterized MAP3Ks that activate known MAP2Ks, and they function in many aspects of developmental biology. This review summarizes known transduction routes linked to each MAP3K and highlights mouse models that provide clues to their physiological functions. This perspective reveals that some of these MAP3K effectors may have redundant functions, and also serve as unique nexus depending on the context of the signaling pathway. Developmental Dynamics 237:3102–3114, 2008.


Oncogene | 1999

Signal transduction pathways regulated by arsenate and arsenite

Amy C. Porter; Gary R. Fanger; Richard R. Vaillancourt

Arsenate and arsenite activate c-Jun N-terminal kinase (JNK), however, the mechanism by which this occurs is not known. By expressing inhibitory mutant small GTP-binding proteins, p21-activated kinase (PAK) and mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinases (MEKKs), we have identified specific proteins that are involved in arsenate- and arsenite-mediated activation of JNK. We observe a distinct difference between arsenate and arsenite signaling, which demonstrates that arsenate and arsenite are capable of activating unique proteins. Both arsenate and arsenite activation of JNK requires Rac and Rho. Neither arsenate nor arsenite signaling was inhibited by a dominant-negative mutant of Cdc42 or Ras. Arsenite stimulation of JNK requires PAK, whereas arsenate-mediated activation of JNK was unaffected by inhibitory mutant PAK. Of the four MEKKs tested, only MEKK3 and MEKK4 are involved in arsenate-mediated activation of JNK. In contrast, arsenite-mediated JNK activation requires MEKK2, MEKK3 and MEKK4. These results better define the mechanisms by which arsenate and arsenite activate JNK and demonstrate differences in the regulation of signal transduction pathways by these inorganic arsenic species.


Archives of Toxicology | 2010

Influence of arsenate and arsenite on signal transduction pathways: an update

Ingrid L. Druwe; Richard R. Vaillancourt

Arsenic has been a recognized contaminant and toxicant, as well as a medicinal compound throughout human history. Populations throughout the world are exposed to arsenic and these exposures have been associated with a number of human cancers. Not much is known about the role of arsenic as a human carcinogen and more recently its role in non-cancerous diseases, such as cardiovascular disease, hypertension and diabetes mellitus have been uncovered. The health effects associated with arsenic are numerous and the association between arsenic exposure and human disease has intensified the search for molecular mechanisms that describe the biological activity of arsenic in humans and leads to the aforementioned disease states. Arsenic poses a human health risk due in part to the regulation of cellular signal transduction pathways and over the last few decades, some cellular mechanisms that account for arsenic toxicity, as well as, signal transduction pathways have been discovered. However, given the ubiquitous nature of arsenic in the environment, making sense of all the data remains a challenge. This review will focus on our knowledge of signal transduction pathways that are regulated by arsenic.


Molecular and Cellular Biology | 1994

Identification of the functional components of the Ras signaling pathway regulating pituitary cell-specific gene expression.

Kerry E. Conrad; James M. Oberwetter; Richard R. Vaillancourt; Gary L. Johnson; Arthur Gutierrez-Hartmann

Ras, a small GTP-binding protein, is required for functional receptor tyrosine kinase signaling. Ultimately, Ras alters the activity of specific nuclear transcription factors and regulates novel patterns of gene expression. Using a rat prolactin promoter construct in transient transfection experiments, we show that both oncogenic Ras and activated forms of Raf-1 kinase selectively stimulated the cellular rat prolactin promoter in GH4 rat pituitary cells. We also show that the Ras signal is completely blocked by an expression vector encoding a dominant-negative Raf kinase. Additionally, using a molecular genetic approach, we determined that inhibitory forms of p42 mitogen-activated protein kinase and an Ets-2 transcription factor interfere with both the Ras and the Raf activation of the rat prolactin promoter. These findings define a functional requirement for these signaling constituents in the activation of the prolactin gene, a cell-specific gene which marks the lactotroph pituitary cell type. Further, this analysis allowed us to order the components in the Ras signaling pathway as it impinges on regulation of prolactin gene transcription as Ras-->Raf kinase-->mitogen-activated protein kinase-->Ets. In contrast, we show that intact c-Jun expression inhibited the Ras-induced activation of the prolactin promoter, defining it as a negative regulator of this pathway, whereas c-Jun was able to enhance the Ras activation of an AP-1-driven promoter in GH4 cells. These data show that c-Jun is not the nuclear mediator of the Ras signal for the highly specialized, pituitary cell-specific prolactin cellular promoter. Thus, we have defined a model system which provides an ideal paradigm for studying Ras/Raf signaling pathways and their effects on neuroendocrine cell-specific gene regulation.

Collaboration


Dive into the Richard R. Vaillancourt's collaboration.

Top Co-Authors

Avatar

Gary L. Johnson

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne M. Gardner

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrius Kazlauskas

Massachusetts Eye and Ear Infirmary

View shared research outputs
Top Co-Authors

Avatar

Arnold E. Ruoho

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge