Richard S. Jope
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard S. Jope.
Progress in Neurobiology | 2001
Carol A. Grimes; Richard S. Jope
Glycogen synthase kinase-3beta (GSK3beta) is a fascinating enzyme with an astoundingly diverse number of actions in intracellular signaling systems. GSK3beta activity is regulated by serine (inhibitory) and tyrosine (stimulatory) phosphorylation, by protein complex formation, and by its intracellular localization. GSK3beta phosphorylates and thereby regulates the functions of many metabolic, signaling, and structural proteins. Notable among the signaling proteins regulated by GSK3beta are the many transcription factors, including activator protein-1, cyclic AMP response element binding protein, heat shock factor-1, nuclear factor of activated T cells, Myc, beta-catenin, CCAAT/enhancer binding protein, and NFkappaB. Lithium, the primary therapeutic agent for bipolar mood disorder, is a selective inhibitor of GSK3beta. This raises the possibility that dysregulation of GSK3beta and its inhibition by lithium may contribute to the disorder and its treatment, respectively. GSK3beta has been linked to all of the primary abnormalities associated with Alzheimers disease. These include interactions between GSK3beta and components of the plaque-producing amyloid system, the participation of GSK3beta in phosphorylating the microtubule-binding protein tau that may contribute to the formation of neurofibrillary tangles, and interactions of GSK3beta with presenilin and other Alzheimers disease-associated proteins. GSK3beta also regulates cell survival, as it facilitates a variety of apoptotic mechanisms, and lithium provides protection from many insults. Thus, GSK3beta has a central role regulating neuronal plasticity, gene expression, and cell survival, and may be a key component of certain psychiatric and neurodegenerative diseases.
Nature Immunology | 2005
Michael Martin; Kunal Rehani; Richard S. Jope; Suzanne M. Michalek
The cellular mechanisms that directly regulate the inflammatory response after Toll-like receptor (TLR) stimulation are unresolved at present. Here we report that glycogen synthase kinase 3 (GSK3) differentially regulates TLR-mediated production of pro- and anti-inflammatory cytokines. Stimulation of monocytes or peripheral blood mononuclear cells with TLR2, TLR4, TLR5 or TLR9 agonists induced substantial increases in interleukin 10 production while suppressing the release of proinflammatory cytokines after GSK3 inhibition. GSK3 regulated the inflammatory response by differentially affecting the nuclear amounts of transcription factors NF-κB subunit p65 and CREB interacting with the coactivator CBP. Administration of a GSK3 inhibitor potently suppressed the proinflammatory response in mice receiving lipopolysaccharide and mediated protection from endotoxin shock. These findings demonstrate a regulatory function for GSK3 in modulating the inflammatory response.
Neurochemical Research | 2007
Richard S. Jope; Christopher J. Yuskaitis; Eléonore Beurel
Deciphering what governs inflammation and its effects on tissues is vital for understanding many pathologies. The recent discovery that glycogen synthase kinase-3 (GSK3) promotes inflammation reveals a new component of its well-documented actions in several prevalent diseases which involve inflammation, including mood disorders, Alzheimer’s disease, diabetes, and cancer. Involvement in such disparate conditions stems from the widespread influences of GSK3 on many cellular functions, with this review focusing on its regulation of inflammatory processes. GSK3 promotes the production of inflammatory molecules and cell migration, which together make GSK3 a powerful regulator of inflammation, while GSK3 inhibition provides protection from inflammatory conditions in animal models. The involvement of GSK3 and inflammation in these diseases are highlighted. Thus, GSK3 may contribute not only to primary pathologies in these diseases, but also to the associated inflammation, suggesting that GSK3 inhibitors may have multiple effects influencing these conditions.
Neuropharmacology | 2002
Patrizia De Sarno; Xiaohua Li; Richard S. Jope
This study tested if sodium valproate or lithium, two agents used to treat bipolar mood disorder, altered the regulatory phosphorylations of Akt or glycogen synthase kinase-3beta (GSK3beta) in human neuroblastoma SH-SY5Y cells. Treatment with sodium valproate caused a gradual but relatively large increase in the activation-associated phosphorylation of Akt on Ser-473, and a similarly gradual but more modest increase in the inhibition-associated phosphorylation of GSK3beta on Ser-9. Two other inhibitors of histone deacetylase, a recently identified target of sodium valproate, also caused gradual increases in the phosphorylation of Akt and GSK3beta. Lithium treatment increased the Ser-9 phosphorylation of GSK3beta both in cells and in mouse brain after chronic administration, but did not alter the phosphorylation of Akt. These results identify novel effects of sodium valproate on the Akt/GSK3beta signaling pathway, indicating that histone deacetylase inhibition is linked to activation of Akt, and show that two anti-bipolar agents have a common action, the increased inhibitory phosphorylation of Ser-9-GSK3beta. The latter finding, along with previous reports that lithium directly inhibits GSK3beta, reveals the possibly unique situation where a single target, GSK3beta, is inhibited by two independent mechanisms, directly and by phosphorylation following lithium administration, and further, that two mood stabilizers have inhibitory effects on GSK3beta.
Trends in Pharmacological Sciences | 2003
Richard S. Jope
The intrigue of lithium, the simplest drug in the modern pharmacopoeia, extends from its complex actions in cells to its therapeutic effects as a mood stabilizer. New surprises from studies of glycogen synthase kinase 3 (GSK-3) show that lithium reduces GSK-3 activity in two ways, both directly and by increasing the inhibitory phosphorylation of GSK-3. These dual effects can act in concert to magnify the influence of lithium on crucial GSK-3-regulated functions (gene expression, cell structure and survival).
Brain Research Reviews | 1979
Richard S. Jope
This review describes recent advances made in the understanding of the regulation of acetylcholine synthesis in brain with regard to the availability of its two precursors, choline and acetylCoA. Choline availability appears to be regulated by the high affinity choline transport system. Investigations of the localization and inhibition of this system are reviewed. Procedures for measuring high affinity choline transport and their shortcomings are described. The kinetics and effects of previous in vivo and in vitro treatments on high affinity choline transport are reviewed. Kinetic and direct coupling of the transport and acetylation of choline are discussed. Recent investigations of the source of acetylCoA used for the synthesis of acetylcholine are reviewed. Three sources of acetylCoA have recently received support: citrate conversion catalyzed by citrate lyase, direct release of acetylCoA from mitochondria following its synthesis from pyruvate catalyzed by pyruvate dehydrogenase, and production of acetylCoA by cytoplasmic pyruvate dehydrogenase. Investigations indicating that acetylCoA availability may limit acetylcholine synthesis are reviewed. A model for the regulation of acetylcholine synthesis which incorporates most of the reviewed material is presented.
Cell | 1997
Jared Ordway; Sara J. Tallaksen-Greene; Claire-Anne Gutekunst; Eve M. Bernstein; Jamie A. Cearley; Howard W. Wiener; Leon S. Dure; Russell Lindsey; Steven M. Hersch; Richard S. Jope; Roger L. Albin; Peter J. Detloff
The mutations responsible for several human neurodegenerative disorders are expansions of translated CAG repeats beyond a normal size range. To address the role of repeat context, we have introduced a 146-unit CAG repeat into the mouse hypoxanthine phosphoribosyltransferase gene (Hprt). Mutant mice express a form of the HPRT protein that contains a long polyglutamine repeat. These mice develop a phenotype similar to the human translated CAG repeat disorders. Repeat containing mice show a late onset neurological phenotype that progresses to premature death. Neuronal intranuclear inclusions are present in affected mice. Our results show that CAG repeats do not need to be located within one of the classic repeat disorder genes to have a neurotoxic effect.
Molecular Psychiatry | 1999
Richard S. Jope
This review introduces the concepts that multiple actions of lithium are critical for its therapeutic effect, and that these complex effects stabilize neuronal activities, support neural plasticity, and provide neuroprotection. Three interacting systems appear most critical. (i) Modulation of neurotransmitters by lithium likely readjusts balances between excitatory and inhibitory activities, and decreased glutamatergic activity may contribute to neuroprotection. (ii) Lithium modulates signals impacting on the cytoskeleton, a dynamic system contributing to neural plasticity, at multiple levels, including glycogen synthase kinase-3β, cyclic AMP-dependent kinase, and protein kinase C, which may be critical for the neural plasticity involved in mood recovery and stabilization. (iii) Lithium adjusts signaling activities regulating second messengers, transcription factors, and gene expression. The outcome of these effects appears likely to result in limiting the magnitudes of fluctuations in activities, contributing to a stabilizing influence induced by lithium, and neuroprotective effects may be derived from its modulation of gene expression.
Journal of Neurochemistry | 2001
Carol A. Grimes; Richard S. Jope
The regulatory influences of glycogen synthase kinase‐3β (GSK3β) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH‐SY5Y cells. Activation of Akt (protein kinase B) with serum‐increased phospho‐serine‐9‐GSK3β (the inactive form of the enzyme), inhibited GSK3β activity, and increased CREB DNA binding activity. Inhibition of GSK3β by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3β also was evident in differentiated SH‐SY5Y cells, indicating that this regulatory interaction is maintained in non‐proliferating cells. These results demonstrate that inhibition of GSK3β by serine‐9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3β to 3.5‐fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin‐like growth factor‐1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3β were reversed by treatment with lithium and with another GSK3β inhibitor, sodium valproate. Overall, these results demonstrate that GSK3β inhibits, and lithium enhances, CREB activation.
Current Drug Targets | 2006
Richard S. Jope; Myoung Sun Roh
Glycogen synthase kinase-3 (GSK3) has recently been linked to mood disorders and schizophrenia, and the neurotransmitter systems and therapeutic treatments associated with these diseases. GSK3 is a widely influential enzyme that is capable of phosphorylating, and thereby regulating, over forty known substrates. Four mechanisms regulating GSK3 (phosphorylation, protein complexes, localization, and substrate phosphorylation) combine to provide substrate-specific regulation of the actions of GSK3. Several intracellular signaling cascades converge on GSK3 to modulate its activity, and several neurotransmitter systems also regulate GSK3, including serotonergic, dopaminergic, cholinergic, and glutamatergic systems. Because of changes in these neurotransmitter systems and the actions of therapeutic drugs, GSK3 has been linked to the mood disorders, bipolar disorder and depression, and to schizophrenia. Inhibition of GSK3 may be an important therapeutic target of mood stabilizers, and regulation of GSK3 may be involved in the therapeutic effects of other drugs used in psychiatry. Dysregulated GSK3 in bipolar disorder, depression, and schizophrenia could have multiple effects that could impair neural plasticity, such as modulation of neuronal architecture, neurogenesis, gene expression, and the ability of neurons to respond to stressful, potentially lethal, conditions. In part because of these key actions of GSK3 and its associations with mood disorders and schizophrenia, much research is currently being devoted to identifying new selective inhibitors of GSK3.