Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Sesboüé is active.

Publication


Featured researches published by Richard Sesboüé.


British Journal of Cancer | 2007

Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by Cetuximab plus chemotherapy.

F. Di Fiore; F. Blanchard; Françoise Charbonnier; F. Le Pessot; A. Lamy; Marie-Pierre Galais; L Bastit; Audrey Killian; Richard Sesboüé; Jean-Jacques Tuech; A M Queuniet; Bernard Paillot; Jean-Christophe Sabourin; Francis Michot; Pierre Michel; Thierry Frebourg

The predictive value of KRAS mutation in metastatic colorectal cancer (MCRC) patients treated with cetuximab plus chemotherapy has recently been suggested. In our study, 59 patients with a chemotherapy-refractory MCRC treated with cetuximab plus chemotherapy were included and clinical response was evaluated according to response evaluation criteria in solid tumours (RECIST). Tumours were screened for KRAS mutations using first direct sequencing, then two sensitive methods based on SNaPshot and PCR-ligase chain reaction (LCR) assays. Clinical response was evaluated according to gene mutations using the Fisher exact test. Times to progression (TTP) were calculated using the Kaplan–Meier method and compared with log-rank test. A KRAS mutation was detected in 22 out of 59 tumours and, in six cases, was missed by sequencing analysis but detected using the SNaPshot and PCR-LCR assays. Remarkably, no KRAS mutation was found in the 12 patients with clinical response. KRAS mutation was associated with disease progression (P=0.0005) and TTP was significantly decreased in mutated KRAS patients (3 vs 5.5 months, P=0.015). Our study confirms that KRAS mutation is highly predictive of a non-response to cetuximab plus chemotherapy in MCRC and highlights the need to use sensitive molecular methods, such as SNaPshot or PCR-LCR assays, to ensure an efficient mutation detection.


Journal of Medical Genetics | 2008

Molecular basis of the Li–Fraumeni syndrome: an update from the French LFS families

Gaëlle Bougeard; Richard Sesboüé; Stéphanie Baert-Desurmont; Stéphanie Vasseur; C Martin; Julie Tinat; Laurence Brugières; Agnès Chompret; B Bressac-de Paillerets; Dominique Stoppa-Lyonnet; Catherine Bonaïti-Pellié; Thierry Frebourg

We have performed an extensive analysis of TP53 in 474 French families suggestive of Li–Fraumeni syndrome (LFS), including 232 families fulfilling the Chompret criteria. We identified a germline alteration of TP53 in 82 families (17%), in 67/232 of the families fulfilling the Chompret criteria (29%) and in 15/242 which did not fulfil these criteria (6%). Most of the alterations corresponded to missense mutations (67%), and we identified in four families genomic deletions removing the entire TP53 locus, the promoter and the non-coding exon 1, or exons 2–10. These results represent a definitive argument demonstrating that LFS results from TP53 haplodeficiency. The mean ages of tumour onset were significantly different between patients harbouring TP53 missense mutations and other types of alterations, missense mutations being associated with a 9 year earlier tumour onset. These results confirm that missense mutations not only inactivate p53 but also have an additional oncogenic effect. Germline alterations of TP53 that lead exclusively to loss of function are therefore associated with a later age of tumour onset and the presence of such mutations should be considered in atypical LFS families with tumours diagnosed after 40 years.


Modern Pathology | 2009

Tumor-infiltrating lymphocytes in colorectal cancers with microsatellite instability are correlated with the number and spectrum of frameshift mutations

D. Tougeron; Emilie Fauquembergue; Alexandre Rouquette; Florence Le Pessot; Richard Sesboüé; Michèle Laurent; Pascaline Berthet; Jacques Mauillon; Frédéric Di Fiore; Jean-Christophe Sabourin; Pierre Michel; Mario Tosi; Thierry Frebourg; Jean-Baptiste Latouche

Colorectal cancers with microsatellite instability are characterized by an important density of tumor-infiltrating lymphocytes and a good prognosis. Microsatellite instability results from the inactivation of the DNA mismatch repair system and induces secondary somatic frameshift mutations within target genes harboring repeat sequences in their coding frame. By disrupting the open reading frame, frameshift mutations can result in the appearance of potentially immunogenic neopeptides. To determine the frameshift mutations inducing a T-cell response during the development of a tumor with microsatellite instability, we studied in 61 colorectal cancer patients with microsatellite instability, using a fluorescent multiplex PCR comparative analysis, the relative frequency of frameshift mutations within 19 target genes and analyzed the correlation of these frameshift mutations with the density of CD3+ tumor-infiltrating lymphocytes. The four most frequently mutated genes were ACVR2 (92%), TAF1B (84%), ASTE1/HT001 (80%) and TGFBR2 (77%). The vast majority (95%) of the tumors exhibited at least three frameshift mutations, and the number of frameshift mutations was associated with tumor progression (TNM stage, wall invasion and tumor diameter). Tumor-infiltrating lymphocyte density was associated with the overall number of frameshift mutations and with the presence of frameshift mutations within two target genes, namely ASTE1/HT001 and PTEN. These results strongly argue for the clinical relevance of immunotherapy of colorectal cancers with microsatellite instability.


Modern Pathology | 2011

Metastatic colorectal cancer KRAS genotyping in routine practice: results and pitfalls.

Aude Lamy; Florence Le Pessot; Richard Sesboüé; Frédéric Di Fiore; Jessie Bossut; Elodie Fiant; Thierry Frebourg; Jean-Christophe Sabourin

KRAS genotyping is mandatory before anti-epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer, which is the second leading cause of cancer-related death in the United States and in Europe. Thus, large-scale KRAS mutation screening is needed for efficient patient management and in the future metastatic colorectal cancer genotyping might also include the detection of the BRAF V600E mutation, which is a very strong negative prognostic factor in colorectal cancer. We report our experience of routine KRAS/BRAF mutation screening practice performed on 1130 formalin-fixed paraffin-embedded tumor samples from 992 colorectal cancer patients. DNA was extracted from macrodissected tumor areas highlighted by a pathologist, KRAS codons 12/13 and BRAF V600E mutations were assessed in a single SNaPshot® multiplex assay and each mutation was confirmed by an independent analysis. KRAS and BRAF mutations were, respectively, present in 41.8 and 6.5% of the tumor samples. If KRAS and BRAF mutations were mutually exclusive, four samples presented two concomitant KRAS mutations. Genotyping of paired primary tumors and metastases from 44 patients indicated that 5 patients (11.4%) presented discordant KRAS mutational status. KRAS genotype heterogeneity was also observed within primary tumor sites in seven cases. Non-reproducible KRAS artefactual mutations were detected in 53 samples (4.7%). We found that the prominent mechanism leading to these artefactual mutations was the fragmentation of DNA occurring during tissue processing. Routine KRAS genotyping performed on formalin-fixed paraffin-embedded tissues requires, therefore, the development of quality control scheme for molecular pathology, especially because of DNA damages induced by formalin fixation. The tumor heterogeneity observed in some patients indicates that it should be more appropriate to perform KRAS genotyping on metastases if sample is available.


British Journal of Cancer | 2010

Molecular determinants of anti-EGFR sensitivity and resistance in metastatic colorectal cancer

F. Di Fiore; Richard Sesboüé; Pierre Michel; Jean-Christophe Sabourin; Thierry Frebourg

Since 2004, the clinical impact of monoclonal antibodies (mAbs) targeting the epidermal growth factor receptor (EGFR) on patients with metastatic colorectal cancer (MCRC) has been clearly established. The combination of these biological agents with conventional chemotherapy has led to a significant improvement in response rate, progression-free survival and overall survival in first-line as well as in second- or third-line treatment of MCRC. However, the high variability of response and outcome in MCRC patients treated with these anti-EGFR mAbs has highlighted the need of identifying clinical and/or molecular predictive markers to ensure appropriate use of targeted therapies. The presence of somatic KRAS mutations has been clearly identified as a predictive marker of resistance to anti-EGFR in MCRC, and the use of anti-EGFR mAbs is now restricted to patients with no detectable KRAS mutation. Several studies have indicated that amplification of EGFR, overexpression of the EGFR ligands and inactivation of the anti-oncogene TP53 are associated with sensitivity to anti-EGFR mAbs, whereas mutations of BRAF and PIK3CA and loss of PTEN expression are associated with resistance. Besides these somatic variations, germline polymorphisms such as those affecting genes involved in the EGFR pathway or within the immunoglobulin receptors may also modulate response to anti-EGFR mAbs. Until now, all these markers are not completely validated and only KRAS genotyping is mandatory in routine practice for use of the anti-EGFR mAbs in MCRC.


Oncogene | 2004

Inactivation of the RRB1-Pescadillo pathway involved in ribosome biogenesis induces chromosomal instability.

Audrey Killian; Nathalie Le Meur; Richard Sesboüé; Jeannette Bourguignon; Gaëlle Bougeard; Julien Gautherot; Christian Bastard; Thierry Frebourg; Jean-Michel Flaman

Since chromosomal instability (CIN) is a hallmark of most cancer cells, it is essential to identify genes whose alteration results into this genetic instability. Using a yeast CIN indicator strain, we show that inactivation of the YMR131c/RRB1 gene, which is involved in early ribosome assembly and whose expression is induced when the spindle checkpoint is activated, alters chromosome segregation and blocks mitosis at the metaphase/anaphase transition. We demonstrate that RRB1 interacts with YPH1 (yeast pescadillo homologue 1) and other members of the Yph1 complex, RPL3, ERB1 and ORC6, involved in ribosome biogenesis and DNA replication. Transient depletion of the human homologues GRWD, Pescadillo, Rpl3, Bop1 and Orc6L resulted in an increase of abnormal mitoses with appearance of binucleate or hyperploid cells, of cells with multipolar spindles and of aberrant metaphase plates. If deregulation of proteins involved in ribosome biogenesis, commonly observed in malignant tumors, could contribute to cancer through an aberrant protein synthesis, our study demonstrates that alteration of proteins linking ribosome biogenesis and DNA replication may directly cause CIN.


Oncogene | 2002

Overexpression of B-type cyclins alters chromosomal segregation.

Nasrin Sarafan-Vasseur; Aude Lamy; Jeannette Bourguignon; Florence Le Pessot; Philip Hieter; Richard Sesboüé; Christian Bastard; Thierry Frebourg; Jean-Michel Flaman

To identify genes which overexpression results into chromosomal instability (CIN), we developed a biological approach based on a yeast indicator strain in which CIN can be detected by a sectoring phenotype. Screening in this strain of a yeast genomic library cloned into a high copy vector led us to identify, among the clones generating 100% of sectoring colonies, Clb5, one of the six B-type cyclins present in yeast. Overexpression of cyclin B2 and cyclin B1, the two human homologs of Clb5, in the CIN indicator strain resulted also into a sectoring phenotype and induced, like overexpression of Clb5, an abnormal sensitivity to benomyl, indicating that overexpression of B-type cyclins alters the spindle checkpoint. In a series of 38 primary colorectal cancers, we detected in five tumors (13%) an accumulation of cyclin B1, which was neither related to mRNA overexpression nor to mutation within the coding region, and in five other tumors (13%) a 2–10-fold increase of cyclin B2 mRNA which was not related to gene amplification. These results suggest that overexpression of cyclins B, resulting from different mechanisms, could contribute, through an alteration of the spindle checkpoint, to the chromosomal instability observed in cancer.


International Journal of Cancer | 2002

Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: A prospective study in high‐risk patients without invasive cancer.

Aude Lamy; Richard Sesboüé; Jeannette Bourguignon; Brigitte Dautreaux; Josette Metayer; Thierry Frebourg; Luc Thiberville

Among the identified factors involved in malignant transformation, abnormal methylation of the CDKN2A/p16INK4a gene promoter has been described as an early event, particularly in bronchial cell cancerization. Precancerous bronchial lesions (n = 70) prospectively sampled during fluorescence endoscopy in a series of 37 patients at high risk for lung cancer were studied with respect to the methylation status of the CDKN2A gene. Methylation‐specific polymerase chain reaction was performed on DNA extracted from pure bronchial cell populations derived from biopsies and detection of p16 protein was studied by immunohistochemistry on contiguous parallel biopsies. Aberrant methylation of the CDKN2A gene promoter was found in 19% of preinvasive lesions and its frequency increased with the histologic grade of the lesions. Methylation in at least 1 bronchial site was significantly more frequent in patients with cancer history, although there was no difference in the outcome of patients with or without methylation in bronchial epithelium. The other risk factors studied (tobacco and asbestos exposure) did not influence the methylation status. There was no relationship between CDKN2A methylation and the evolutionary character of the lesions. Our results confirm that abnormal methylation of the CDKN2A gene promoter is an early event in bronchial cell cancerization, which can persist for several years after carcinogen exposure cessation, and show that this epigenetic alteration cannot predict the evolution of precancerous lesions within a 2‐year follow‐up.


Cancer Research | 2015

Correlation between Density of CD8+ T-cell Infiltrate in Microsatellite Unstable Colorectal Cancers and Frameshift Mutations: A Rationale for Personalized Immunotherapy

Pauline Maby; D. Tougeron; Mohamad Hamieh; Bernhard Mlecnik; Hafid Kora; Gabriela Bindea; Helen K. Angell; Tessa Fredriksen; Nicolas Elie; Emilie Fauquembergue; Aurélie Drouet; Jérôme Leprince; Jacques Benichou; Jacques Mauillon; Florence Le Pessot; Richard Sesboüé; Jean-Jacques Tuech; Jean-Christophe Sabourin; Pierre Michel; Thierry Frebourg; Jérôme Galon; Jean-Baptiste Latouche

Colorectal cancers with microsatellite instability (MSI) represent 15% of all colorectal cancers, including Lynch syndrome as the most frequent hereditary form of this disease. Notably, MSI colorectal cancers have a higher density of tumor-infiltrating lymphocytes (TIL) than other colorectal cancers. This feature is thought to reflect the accumulation of frameshift mutations in sequences that are repeated within gene coding regions, thereby leading to the synthesis of neoantigens recognized by CD8(+) T cells. However, there has yet to be a clear link established between CD8(+) TIL density and frameshift mutations in colorectal cancer. In this study, we examined this link in 103 MSI colorectal cancers from two independent cohorts where frameshift mutations in 19 genes were analyzed and CD3(+), CD8(+), and FOXP3(+) TIL densities were quantitated. We found that CD8(+) TIL density correlated positively with the total number of frameshift mutations. TIL densities increased when frameshift mutations were present within the ASTE1, HNF1A, or TCF7L2 genes, increasing even further when at least one of these frameshift mutations was present in all tumor cells. Through in vitro assays using engineered antigen-presenting cells, we were able to stimulate peripheral cytotoxic T cells obtained from colorectal cancer patients with peptides derived from frameshift mutations found in their tumors. Taken together, our results highlight the importance of a CD8(+) T cell immune response against MSI colorectal cancer-specific neoantigens, establishing a preclinical rationale to target them as a personalized cellular immunotherapy strategy, an especially appealing goal for patients with Lynch syndrome.


Genes, Chromosomes and Cancer | 2006

Contribution of the BOP1 gene, located on 8q24, to colorectal tumorigenesis.

Audrey Killian; Nasrin Sarafan-Vasseur; Richard Sesboüé; Florence Le Pessot; Aude Lamy; Michelle Laurent; Jean-Michel Flaman; Thierry Frebourg

The most common form of genomic instability observed in colorectal cancer is chromosomal instability (CIN), whose molecular bases remain to be determined. We have previously demonstrated that inactivation in human cells of several components of the Pes1‐Bop1 complex (BOP1, GRWD1, PES1, ORC6L, and RPL3), involved in ribosome biogenesis, altered chromosome segregation. To determine the contribution to colorectal tumorigenesis of somatic alterations of genes involved in ribosome biogenesis, we screened 56 primary colorectal cancers, using quantitative multiplex PCR of short fluorescent fragments, a sensitive method for the detection of gene dosage alterations. We found that dosage increase of the BOP1 gene was a frequent event, being detected in 39% of the tumors, and we show that it is associated with an increase of BOP1 mRNA. Scanning of 8q24, on which BOP1 is located, revealed that in colorectal cancers, gene dosage increase of BOP1 can be independent from that of MYC and was more frequent than that affecting MYC. Finally, transient overexpression of BOP1 in human cells increased the percentage of multipolar spindles. Together with our previous results, the present study strongly suggests that deregulation of the BOP1 pathway contributes to colorectal tumorigenesis.

Collaboration


Dive into the Richard Sesboüé's collaboration.

Researchain Logo
Decentralizing Knowledge