Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Svanbäck is active.

Publication


Featured researches published by Richard Svanbäck.


The American Naturalist | 2003

The Ecology of Individuals: Incidence and Implications of Individual Specialization

Daniel I. Bolnick; Richard Svanbäck; James A. Fordyce; Louie H. Yang; Jeremy Martin Davis; C. Darrin Hulsey; Matthew L. Forister

Most empirical and theoretical studies of resource use and population dynamics treat conspecific individuals as ecologically equivalent. This simplification is only justified if interindividual niche variation is rare, weak, or has a trivial effect on ecological processes. This article reviews the incidence, degree, causes, and implications of individual‐level niche variation to challenge these simplifications. Evidence for individual specialization is available for 93 species distributed across a broad range of taxonomic groups. Although few studies have quantified the degree to which individuals are specialized relative to their population, between‐individual variation can sometimes comprise the majority of the population’s niche width. The degree of individual specialization varies widely among species and among populations, reflecting a diverse array of physiological, behavioral, and ecological mechanisms that can generate intrapopulation variation. Finally, individual specialization has potentially important ecological, evolutionary, and conservation implications. Theory suggests that niche variation facilitates frequency‐dependent interactions that can profoundly affect the population’s stability, the amount of intraspecific competition, fitness‐function shapes, and the population’s capacity to diversify and speciate rapidly. Our collection of case studies suggests that individual specialization is a widespread but underappreciated phenomenon that poses many important but unanswered questions.


Evolutionary Ecology Research | 2007

Intraspecific competition drives increased resource use diversity within a natural population

Richard Svanbäck; Daniel I. Bolnick

Resource competition is thought to play a major role in driving evolutionary diversification. For instance, in ecological character displacement, coexisting species evolve to use different resources, reducing the effects of interspecific competition. It is thought that a similar diversifying effect might occur in response to competition among members of a single species. Individuals may mitigate the effects of intraspecific competition by switching to use alternative resources not used by conspecific competitors. This diversification is the driving force in some models of sympatric speciation, but has not been demonstrated in natural populations. Here, we present experimental evidence confirming that competition drives ecological diversification within natural populations. We manipulated population density of three-spine sticklebacks (Gasterosteus aculeatus) in enclosures in a natural lake. Increased population density led to reduced prey availability, causing individuals to add alternative prey types to their diet. Since phenotypically different individuals added different alternative prey, diet variation among individuals increased relative to low-density control enclosures. Competition also increased the diet–morphology correlations, so that the frequency-dependent interactions were stronger in high competition. These results not only confirm that resource competition promotes niche variation within populations, but also show that this increased diversity can arise via behavioural plasticity alone, without the evolutionary changes commonly assumed by theory.


Ecology | 2002

MEASURING INDIVIDUAL-LEVEL RESOURCE SPECIALIZATION

Daniel I. Bolnick; Louie H. Yang; James A. Fordyce; Jeremy Martin Davis; Richard Svanbäck

Many apparently generalized species are in fact composed of individual specialists that use a small subset of the populations resource distribution. Niche variation is usually established by testing the null hypothesis that individuals draw from a common resource distribution. This approach encourages a publication bias in which negative results are rarely reported, and obscures variation in the degree of individual specialization, limiting our ability to carry out comparative studies of the causes or consequences of niche variation. To facilitate studies of the degree of individual specialization, this paper outlines four quantitative indices of intrapopulation variation in resource use. Traditionally, such variation has been measured by partitioning the populations total niche width into within- and between-individual, sex, or phenotype components. We suggest two alternative measures that quantify the mean resource overlap between an individual and its population, and we discuss the advantages and disadvantages of all four measures. The utility of all indices depends on the quality of the empirical data. If resources are measured in a coarse-grained manner, individuals may falsely appear generalized. Alternatively, specialization may be overestimated by cross-sectional sampling schemes where diet variation can reflect a patchy environment. Isotope ratios, parasites, or diet-morphology correlations can complement cross-sectional data to establish temporal consistency of individual specialization.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous

Daniel I. Bolnick; Richard Svanbäck; Márcio S. Araújo; Lennart Persson

There is extensive evidence that some species of ecological generalists, which use a wide diversity of resources, are in fact heterogeneous collections of relatively specialized individuals. This within-population variation, or “individual specialization,” is a key requirement for frequency-dependent interactions that may drive a variety of types of evolutionary diversification and may influence the population dynamics and ecological interactions of species. Consequently, it is important to understand when individual specialization is likely to be strong or weak. The niche variation hypothesis (NVH) suggests that populations tend to become more generalized when they are released from interspecific competition. This niche expansion was proposed to arise via increased variation among individuals rather than increased individual niche breadth. Consequently, we expect ecological generalists to exhibit stronger individual specialization, but this correlation has been repeatedly rejected by empiricists. The drawback with previous empirical tests of the NVH is that they use morphological variation as a proxy for niche variation, ignoring the role of behavior and complex phenotype–function relationships. Here, we used diet data to directly estimate niche variation among individuals. Consistent with the NVH, we show that more generalized populations also exhibit more niche variation. This trend is quite general, appearing in all five case studies examined: three-spine stickleback, Eurasian perch, Anolis lizards, intertidal gastropods, and a community of neotropical frogs. Our results suggest that generalist populations may tend to be more ecologically variable. Whether this translates into greater genetic variation, evolvability, or ecological stability remains to be determined.


Oecologia | 2002

Effects of habitat and food resources on morphology and ontogenetic growth trajectories in perch.

Richard Svanbäck; Peter Eklöv

Abstract. Studies on resource polymorphism have mainly been considered at the end stage of ontogeny, whereas many species undergo diet changes as they grow. We conducted a field survey to analyze the role of adaptive variation during ontogeny in Eurasian perch (Perca fluviatilis). We caught perch from the littoral and pelagic zones of a lake to investigate whether perch differ in morphology and diet between these habitats. We also investigated whether there were any differences in morphological trajectories during the ontogeny of perch collected from the two habitats. We found that perch caught in the littoral habitat, independently of size, had a deeper body, larger head and mouth and longer fins than perch caught in the pelagic zone. Macroinvertebrates and fish dominated the diet of littoral perch, whereas the diet of the pelagic perch consisted mainly of zooplankton and to some extent fish. Independently of size, the more streamlined individuals had a larger proportion of zooplankton and a smaller proportion of macroinvertebrates in their diet than the deeper-bodied individuals, indicating a relation between diet and morphology. Some morphological characters followed different ontogenetic trajectories in the two habitats; e.g. the changes to a deeper body and a larger head were faster in the littoral than in the pelagic perch. The relationship between the length of perch and the size of the mouth and fins also differed between perch from the two habitats, where the increase in the length of the pelvic fin and the area of the mouth increased faster with size in the littoral perch. Our findings show that variation in morphology between habitats differs during ontogeny in a way that corresponds to functional expectations for fish species that occupy these habitats.


Nature Communications | 2014

Individual diet has sex-dependent effects on vertebrate gut microbiota

Daniel I. Bolnick; Lisa K. Snowberg; Philipp E. Hirsch; Christian L. Lauber; Elin Org; Brian M. Parks; Aldons J. Lusis; Rob Knight; J. Gregory Caporaso; Richard Svanbäck

Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects.


Ecology | 2009

Intrapopulation niche partitioning in a generalist predator limits food web connectivity

Mario Quevedo; Richard Svanbäck; Peter Eklöv

Predators are increasingly recognized as key elements in food webs because of their ability to link the fluxes of nutrients and energy between spatially separated food chains. However, in the context of food web connectivity, predator populations have been mainly treated as homogeneous units, despite compelling evidence of individual specialization in resource use. It is conceivable that individuals of a predatory species use different resources associated with spatially separated food chains, thereby decoupling cross-habitat linkages. We tested whether intrapopulation differences in habitat use in the generalist freshwater predator Eurasian perch (Perca fluviatilis) led to long-term niche partitioning and affected the degree of ecological habitat coupling. We evaluated trophic niche variability at successively larger timescales by analyzing gut contents and stable isotopes (delta13C and delta15N) in liver and muscle, tissues that provide successively longer integration of trophic activity. We found that the use of distinct habitats in perch led to intrapopulation niche partitioning between pelagic and littoral subpopulations, consistent through the various timescales. Pelagic fish showed a narrower niche, lower individual specialization, and more stable trophic behavior than littoral fish, as could be expected from inhabiting a relatively less diverse environment. This result indicated that substantial niche reduction could occur in a generalist predator at the subpopulation level, consistent with the use of a habitat that provides fewer chances of individual specialization. We showed that intrapopulation niche partitioning limits the ability of individual predators to link spatially separated food chains. In addition, we suggest a quantitative, standardized approach based on stable isotopes to measure the degree of habitat coupling mediated by a top predator.


web science | 2008

NETWORK ANALYSIS REVEALS CONTRASTING EFFECTS OF INTRASPECIFIC COMPETITION ON INDIVIDUAL VS. POPULATION DIETS

Márcio S. Araújo; Paulo R. Guimarães; Richard Svanbäck; Aluísio Pinheiro; Sérgio F. dos Reis; Daniel I. Bolnick

Optimal foraging theory predicts that individuals should become more opportunistic when intraspecific competition is high and preferred resources are scarce. This density-dependent diet shift should result in increased diet breadth for individuals as they add previously unused prey to their repertoire. As a result, the niche breadth of the population as a whole should increase. In a recent study, R. Svanbäck and D. I. Bolnick confirmed that intraspecific competition led to increased population diet breadth in threespine stickleback (Gasterosteus aculeatus). However, individual diet breadth did not expand as resource levels declined. Here, we present a new method based on complex network theory that moves beyond a simple measure of diet breadth, and we use the method to reexamine the stickleback experiment. This method reveals that the population as a whole added new types of prey as stickleback density was increased. However, whereas foraging theory predicts that niche expansion is achieved by individuals accepting new prey in addition to previously preferred prey, we found that a subset of individuals ceased to use their previously preferred prey, even though other members of their population continued to specialize on the original prey types. As a result, populations were subdivided into groups of ecologically similar individuals, with diet variation among groups reflecting phenotype-dependent changes in foraging behavior as prey density declined. These results are consistent with foraging theory if we assume that quantitative trait variation among consumers affects prey preferences, and if cognitive constraints prevent individuals from continuing to use their formerly preferred prey while adding new prey.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Gigantic cannibals driving a whole-lake trophic cascade

L. Persson; A.M. de Roos; David Claessen; PärByströmP. Byström; J. Lövgren; S. Sjögren; Richard Svanbäck; Eva Wahlström; Erika Westman

Trophic cascades have been a central paradigm in explaining the structure of ecological communities but have been demonstrated mainly through comparative studies or experimental manipulations. In contrast, evidence for shifts in trophic cascades caused by intrinsically driven population dynamics is meager. By using empirical data of a cannibalistic fish population covering a 10-year period and a size-structured population model, we show the occurrence of a dynamic trophic cascade in a lake ecosystem, in which the community over time alternates between two different configurations. The intrinsically driven change in the size structure of the fish population from a dominance of stunted individuals to a dominance of gigantic cannibals among adult individuals is the driving force behind distinct abundance switches observed in zooplankton and phytoplankton. The presence of the phase with gigantic cannibals depends critically on the energy they extract from their victims, allowing strong reproduction for a number of years.


The American Naturalist | 2006

Predation Risk Influences Adaptive Morphological Variation in Fish Populations

Peter Eklöv; Richard Svanbäck

Predators can cause a shift in both density and frequency of a prey phenotype that may lead to phenotypic divergence through natural selection. What is less investigated is that predators have a variety of indirect effects on prey that could potentially have large evolutionary responses. We conducted a pond experiment to test whether differences in predation risk in different habitats caused shifts in behavior of prey that, in turn, would affect their morphology. We also tested whether the experimental data could explain the morphological variation of perch in the natural environment. In the experiment, predators caused the prey fish to shift to the habitat with the lower predation risk. The prey specialized on habitat‐specific resources, and there was a strong correlation between diet of the prey fish and morphological variation, suggesting that resource specialization ultimately affected the morphology. The lack of differences in competition and mortality suggest that the morphological variation among prey was induced by differences in predation risk among habitats. The field study demonstrated that there are differences in growth related to morphology of perch in two different habitats. Thus, a trade‐off between foraging and predator avoidance could be responsible for adaptive morphological variation of young perch.

Collaboration


Dive into the Richard Svanbäck's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel I. Bolnick

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Pineda-Krch

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge