Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard T. George is active.

Publication


Featured researches published by Richard T. George.


Circulation | 2006

Contrast-Enhanced Multidetector Computed Tomography Viability Imaging After Myocardial Infarction: Characterization of Myocyte Death, Microvascular Obstruction, and Chronic Scar

Albert C. Lardo; Marco A. S. Cordeiro; Caterina Silva; Luciano C. Amado; Richard T. George; Anastasios Saliaris; Karl H. Schuleri; Veronica Fernandes; Menekhem M. Zviman; Saman Nazarian; Henry R. Halperin; Katherine C. Wu; Joshua M. Hare; Joao A.C. Lima

Background— The ability to distinguish dysfunctional but viable myocardium from nonviable tissue has important prognostic implications after myocardial infarction. The purpose of this study was to validate the accuracy of contrast-enhanced multidetector computed tomography (MDCT) for quantifying myocardial necrosis, microvascular obstruction, and chronic scar after occlusion/reperfusion myocardial infarction. Methods and Results— Ten dogs and 7 pigs underwent balloon occlusion of the left anterior descending coronary artery (LAD) followed by reperfusion. Contrast-enhanced (Visipaque, 150 mL, 325 mg/mL) MDCT (0.5 mm × 32 slice) was performed before occlusion and 90 minutes (canine) or 8 weeks (porcine) after reperfusion. MDCT images were analyzed to define infarct size/extent and microvascular obstruction and compared with postmortem myocardial staining (triphenyltetrazolium chloride) and microsphere blood flow measurements. Acute and chronic infarcts by MDCT were characterized by hyperenhancement, whereas regions of microvascular obstruction were characterized by hypoenhancement. MDCT infarct volume compared well with triphenyltetrazolium chloride staining (acute infarcts 21.1±7.2% versus 20.4±7.4%, mean difference 0.7%; chronic infarcts 4.15±1.93% versus 4.92±2.06%, mean difference −0.76%) and accurately reflected morphology and the transmural extent of injury in all animals. Peak hyperenhancement of infarcted regions occurred ≈5 minutes after contrast injection. MDCT-derived regions of microvascular obstruction were also identified accurately in acute studies and correlated with reduced flow regions as measured by microsphere blood flow. Conclusions— The spatial extent of acute and healed myocardial infarction can be determined and quantified accurately with contrast-enhanced MDCT. This feature, combined with existing high-resolution MDCT coronary angiography, may have important implications for the comprehensive assessment of cardiovascular disease.


Circulation-cardiovascular Imaging | 2009

Adenosine stress 64- and 256-row detector computed tomography angiography and perfusion imaging: a pilot study evaluating the transmural extent of perfusion abnormalities to predict atherosclerosis causing myocardial ischemia.

Richard T. George; Armin Arbab-Zadeh; Julie M. Miller; Kakuya Kitagawa; Hyuk-Jae Chang; David A. Bluemke; Lewis C. Becker; Omair Yousuf; John Texter; Albert C. Lardo; Joao A.C. Lima

Background—Multidetector computed tomography coronary angiography (CTA) is a robust method for the noninvasive diagnosis of coronary artery disease. However, in its current form, CTA is limited in its prediction of myocardial ischemia. The purpose of this study was to test whether adenosine stress computed tomography myocardial perfusion imaging (CTP), when added to CTA, can predict perfusion abnormalities caused by obstructive atherosclerosis. Methods and Results—Forty patients with a history of abnormal single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) underwent adenosine stress 64-row (n=24) or 256-row (n=16) detector CTP and CTA. A subset of 27 patients had invasive angiography available for quantitative coronary angiography. CTA and quantitative coronary angiography were evaluated for stenoses ≥50%, and SPECT-MPI was evaluated for fixed and reversible perfusion deficits using a 17-segment model. CTP images were analyzed for the transmural differences in perfusion using the transmural perfusion ratio (subendocardial attenuation density/subepicardial attenuation density). The sensitivity, specificity, positive predictive value, and negative predictive value for the combination of CTA and CTP to detect obstructive atherosclerosis causing perfusion abnormalities using the combination of quantitative coronary angiography and SPECT as the gold standard was 86%, 92%, 92%, and 85% in the per-patient analysis and 79%, 91%, 75%, and 92% in the per vessel/territory analysis, respectively. Conclusions—The combination of CTA and CTP can detect atherosclerosis causing perfusion abnormalities when compared with the combination of quantitative coronary angiography and SPECT.


European Heart Journal | 2014

Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study

Carlos Eduardo Rochitte; Richard T. George; Marcus Y. Chen; Armin Arbab-Zadeh; Marc Dewey; Julie M. Miller; Hiroyuki Niinuma; Kunihiro Yoshioka; Kakuya Kitagawa; Shiro Nakamori; Roger J. Laham; Andrea L. Vavere; Rodrigo J. Cerci; Vishal C. Mehra; Cesar Nomura; Klaus F. Kofoed; Masahiro Jinzaki; Sachio Kuribayashi; Albert de Roos; Michael Laule; Swee Yaw Tan; John Hoe; Narinder Paul; Frank J. Rybicki; Jeffery Brinker; Andrew E. Arai; Christopher Cox; Melvin E. Clouse; Marcelo F. Di Carli; Joao A.C. Lima

AIMS To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed tomography (SPECT). METHODS AND RESULTS We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon emission computed tomography (SPECT/MPI). Sixteen centres enroled 381 patients who underwent combined CTA-CTP and SPECT/MPI prior to conventional coronary angiography. All four image modalities were analysed in blinded independent core laboratories. The prevalence of obstructive CAD defined by combined ICA-SPECT/MPI and ICA alone was 38 and 59%, respectively. The patient-based diagnostic accuracy defined by the area under the receiver operating characteristic curve (AUC) of integrated CTA-CTP for detecting or excluding flow-limiting CAD was 0.87 [95% confidence interval (CI): 0.84-0.91]. In patients without prior myocardial infarction, the AUC was 0.90 (95% CI: 0.87-0.94) and in patients without prior CAD the AUC for combined CTA-CTP was 0.93 (95% CI: 0.89-0.97). For the combination of a CTA stenosis ≥50% stenosis and a CTP perfusion deficit, the sensitivity, specificity, positive predictive, and negative predicative values (95% CI) were 80% (72-86), 74% (68-80), 65% (58-72), and 86% (80-90), respectively. For flow-limiting disease defined by ICA-SPECT/MPI, the accuracy of CTA was significantly increased by the addition of CTP at both the patient and vessel levels. CONCLUSIONS The combination of CTA and perfusion correctly identifies patients with flow limiting CAD defined as ≥50 stenosis by ICA causing a perfusion defect by SPECT/MPI.


Investigative Radiology | 2007

Quantification of myocardial perfusion using dynamic 64-detector computed tomography.

Richard T. George; Michael Jerosch-Herold; Caterina Silva; Kakuya Kitagawa; David A. Bluemke; Joao A.C. Lima; Albert C. Lardo

Objectives:The purpose of this study was to determine the ability of dynamic 64 slice multidetector computed tomography (d-MDCT) to provide an accurate measurement of myocardial blood flow (MBF) during first-pass d-MDCT using semiquantitative and quantitative analysis methods. Materials and Methods:Six dogs with a moderate to severe left-anterior descending artery stenosis underwent adenosine (0.14 mL · kg−1 · min−1) stress d-MDCT imaging according to the following imaging protocol: iopamidol 10 mL/s for 3 seconds, 8 mm × 4 collimation, 400 milliseconds gantry rotation time, 120 kV, and 60 mAs. Images were reconstructed at 1-second intervals. Regions of interest were drawn in the LAD and remote territories, and time-attenuation curves were constructed. Myocardial perfusion was analyzed using a model-based deconvolution method and 2 upslope methods and compared with the microsphere MBF measurements. Results:The myocardial upslope-to-LV-upslope and myocardial upslope-to-LV-max ratio strongly correlated with MBF (R2 = 0.92, P < 0.0001 and R2 = 0.87, P < 0.0001, respectively). Absolute MBF derived by model-based deconvolution analysis modestly overestimated MBF compared with microsphere MBF (3.0 ± 2.5 mL · g−1 · min−1 vs. 2.6 ± 2.7 mL · g−1 · min−1, respectively). Overall, MDCT-derived MBF strongly correlated with microspheres (R2 = 0.91, P < 0.0001, mean difference: 0.45 mL · g−1 · min−1, P = NS). Conclusions:d-MDCT MBF measurements using upslope and model-based deconvolution methods correlate well with microsphere MBF. These methods may become clinically applicable in conjunction with coronary angiography and next generation MDCT scanners with larger detector arrays and full cardiac coverage.


Circulation-cardiovascular Imaging | 2012

Computed Tomography Myocardial Perfusion Imaging With 320-Row Detector Computed Tomography Accurately Detects Myocardial Ischemia in Patients With Obstructive Coronary Artery Disease

Richard T. George; Armin Arbab-Zadeh; Julie M. Miller; Andrea L. Vavere; Frank M. Bengel; Albert C. Lardo; Joao A.C. Lima

Background— Computed tomography coronary angiography (CTA) has been shown to be accurate in detecting anatomic coronary arterial obstruction, but is limited for the detection of myocardial ischemia. The primary aim of this study was to assess the accuracy of 320-row computed tomography perfusion imaging (CTP) to detect atherosclerosis causing myocardial ischemia. Methods and Results— Fifty symptomatic patients with recent single photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) underwent a comprehensive cardiac computed tomography (CT) protocol that included 320-CTA, followed by adenosine stress CTP. CTP images were analyzed quantitatively for the presence of subendocardial perfusion deficits. All analyses were blinded to imaging and clinical results. CTA alone was a limited predictor of myocardial ischemia compared with SPECT, with a sensitivity, specificity, positive (PPV) and negative predictive value (NPV) of 56%, 75%, 56%, and 75%, and the area under the receiver operator characteristic curve (AUC) was 0.65 (95% CI, 0.51–0.78, P=0.07). CTP was a better predictor of myocardial ischemia, with a sensitivity, specificity, PPV, and NPV of 72%, 91%, 81%, and 85%, with an AUC of 0.81 (95% CI, 0.68–0.91, P<0.001), and was an excellent predictor of myocardial ischemia on SPECT-MPI in the presence of stenosis (≥50% on CTA), with a sensitivity, specificity, PPV, and NPV of 100%, 81%, 50%, and 100%, with an AUC of 0.92 (95% CI, 0.80–0.97, P<0.001). The radiation dose for the comprehensive cardiac CT protocol and SPECT were 13.8±2.9 and 13.1±1.7; respectively (P=0.15). Conclusions— Computed tomography perfusion imaging with rest and adenosine stress 320-row CT is accurate in detecting obstructive atherosclerosis causing myocardial ischemia.


American Journal of Roentgenology | 2011

Diagnostic Performance of Combined Noninvasive Coronary Angiography and Myocardial Perfusion Imaging Using 320-MDCT: The CT Angiography and Perfusion Methods of the CORE320 Multicenter Multinational Diagnostic Study

Richard T. George; Armin Arbab-Zadeh; Rodrigo J. Cerci; Andrea L. Vavere; Kakuya Kitagawa; Marc Dewey; Carlos Eduardo Rochitte; Andrew E. Arai; Narinder Paul; Frank J. Rybicki; Albert C. Lardo; Melvin E. Clouse; Joao A.C. Lima

OBJECTIVE Coronary MDCT angiography has been shown to be an accurate noninvasive tool for the diagnosis of obstructive coronary artery disease (CAD). Its sensitivity and negative predictive value for diagnosing percentage of stenosis are unsurpassed compared with those of other noninvasive testing methods. However, in its current form, it provides no information regarding the physiologic impact of CAD and is a poor predictor of myocardial ischemia. CORE320 is a multicenter multinational diagnostic study with the primary objective to evaluate the diagnostic accuracy of 320-MDCT for detecting coronary artery luminal stenosis and corresponding myocardial perfusion deficits in patients with suspected CAD compared with the reference standard of conventional coronary angiography and SPECT myocardial perfusion imaging. CONCLUSION We aim to describe the CT acquisition, reconstruction, and analysis methods of the CORE320 study.


Radiology | 2010

Characterization and Correction of Beam-hardening Artifacts during Dynamic Volume CT Assessment of Myocardial Perfusion

Kakuya Kitagawa; Richard T. George; Armin Arbab-Zadeh; Joao A.C. Lima; Albert C. Lardo

PURPOSE To fully characterize beam-hardening effects caused by iodinated contrast medium in the left ventricular (LV) cavity and aorta in the assessment of myocardial perfusion at computed tomography (CT) and to validate a beam-hardening artifact correction algorithm that considers fluid-filled vessels and chambers important sources of beam hardening. MATERIALS AND METHODS The Johns Hopkins University animal care and use committee approved all procedures. An anatomically correct LV and myocardial phantom to characterize beam-hardening artifacts was designed. Following validation in the phantom, the beam-hardening correction (BHC) algorithm was applied to 256-detector row dynamic volume CT images in a canine ischemia model (n = 5) during adenosine stress, and the effect of beam hardening was determined by comparing regional dynamic volume CT perfusion metrics (myocardial upslope normalized by maximum LV blood pool attenuation) with microsphere-derived myocardial blood flow (MBF). A paired Student t test was used to compare continuous variables from the same subject but under different conditions, while linear regression analysis was performed to estimate the slope and statistical significance of the relationship between CT-derived perfusion metrics and microsphere-derived MBF. RESULTS Beam-hardening artifacts were successfully reproduced in phantom studies and were eliminated with the BHC algorithm. The correlation coefficient of CT-derived perfusion metrics and microsphere-derived MBF improved from 0.60 to 0.74 (P > .05) following correction in the animal model. CONCLUSION Beam-hardening artifacts confound dynamic volume CT assessment of myocardial perfusion. Application of the BHC algorithm is helpful for improving accuracy of myocardial perfusion at dynamic volume CT.


Journal of the American College of Cardiology | 2009

Characterization of Peri-Infarct Zone Heterogeneity by Contrast-Enhanced Multidetector Computed Tomography: A Comparison With Magnetic Resonance Imaging

Karl H. Schuleri; Marco Centola; Richard T. George; Luciano C. Amado; Kristine S. Evers; Kakuya Kitagawa; Andrea L. Vavere; Robert Evers; Joshua M. Hare; Christopher Cox; Elliot R. McVeigh; Joao A.C. Lima; Albert C. Lardo

OBJECTIVES This study examined whether multidetector computed tomography (MDCT) improves the ability to define peri-infarct zone (PIZ) heterogeneity relative to magnetic resonance imaging (MRI). BACKGROUND The PIZ as characterized by delayed contrast-enhancement (DE)-MRI identifies patients susceptible to ventricular arrhythmias and predicts outcome after myocardial infarction (MI). METHODS Fifteen mini-pigs underwent coronary artery occlusion followed by reperfusion. Both MDCT and MRI were performed on the same day approximately 6 months after MI induction, followed by animal euthanization and ex vivo MRI (n = 5). Signal density threshold algorithms were applied to MRI and MDCT datasets reconstructed at various slice thicknesses (1 to 8 mm) to define the PIZ and to quantify partial volume effects. RESULTS The DE-MDCT reconstructed at 8-mm slice thickness showed excellent correlation of infarct size with post-mortem pathology (r2 = 0.97; p < 0.0001) and MRI (r2 = 0.92; p < 0.0001). The DE-MDCT and -MRI were able to detect a PIZ in all animals, which correlates to a mixture of viable and nonviable myocytes at the PIZ by histology. The ex vivo DE-MRI PIZ volume decreased with slice thickness from 0.9 +/- 0.2 ml at 8 mm to 0.2 +/- 0.1 ml at 1 mm (p = 0.01). The PIZ volume/mass by DE-MDCT increased with decreasing slice thickness because of declining partial volume averaging in the PIZ, but was susceptible to increased image noise. CONCLUSIONS A DE-MDCT provides a more detailed assessment of the PIZ in chronic MI and is less susceptible to partial volume effects than MRI. This increased resolution best reflects the extent of tissue mixture by histopathology and has the potential to further enhance the ability to define the substrate of malignant arrhythmia in ischemic heart disease noninvasively.


The Journal of Infectious Diseases | 2015

Elevated Levels of Monocyte Activation Markers Are Associated With Subclinical Atherosclerosis in Men With and Those Without HIV Infection

Rebeccah A. McKibben; Joseph B. Margolick; Steven Grinspoon; Xiuhong Li; Frank J. Palella; Lawrence A. Kingsley; Mallory D. Witt; Richard T. George; Lisa P. Jacobson; Matthew J. Budoff; Russell P. Tracy; Todd T. Brown; Wendy S. Post

BACKGROUND Heightened immune activation among human immunodeficiency virus (HIV)-infected persons may contribute to atherosclerosis. We assessed associations of serologic markers of monocyte activation, soluble CD163 (sCD163) and soluble CD14 (sCD14), and monocyte chemoattractant protein 1 (CCL2) with subclinical atherosclerosis among men with and those without HIV infection in the Multicenter AIDS Cohort Study. METHODS We performed noncontrast computed tomography on 906 men (566 HIV-infected men and 340 HIV-uninfected men), 709 of whom also underwent coronary computed tomographic angiography. Associations between each biomarker and the prevalence of coronary plaque, the prevalence of stenosis of ≥50%, and the extent of plaque were assessed by logistic and linear regression, adjusting for age, race, HIV serostatus, and cardiovascular risk factors. RESULTS Levels of all biomarkers were higher among HIV-infected men, of whom 81% had undetectable HIV RNA, and were associated with lower CD4(+) T-cell counts. In the entire population and among HIV-infected men, higher biomarker levels were associated with a greater prevalence of coronary artery stenosis of ≥50%. Higher sCD163 levels were also associated with greater prevalences of coronary artery calcium, mixed plaque, and calcified plaque; higher CCL2 levels were associated with a greater extent of noncalcified plaque. CONCLUSIONS sCD163, sCD14, and CCL2 levels were elevated in treated HIV-infected men and associated with atherosclerosis. Monocyte activation may increase the risk for cardiovascular disease in individuals with HIV infection.


Radiology | 2014

Myocardial CT Perfusion Imaging and SPECT for the Diagnosis of Coronary Artery Disease: A Head-to-Head Comparison from the CORE320 Multicenter Diagnostic Performance Study

Richard T. George; Vishal C. Mehra; Marcus Y. Chen; Kakuya Kitagawa; Armin Arbab-Zadeh; Julie M. Miller; Matthew Matheson; Andrea L. Vavere; Klaus F. Kofoed; Carlos Eduardo Rochitte; Marc Dewey; Tan Swee Yaw; Hiroyuki Niinuma; Winfried Brenner; Christopher Cox; Melvin E. Clouse; Joao A.C. Lima; Marcelo F. Di Carli

PURPOSE To compare the diagnostic performance of myocardial computed tomographic (CT) perfusion imaging and single photon emission computed tomography (SPECT) perfusion imaging in the diagnosis of anatomically significant coronary artery disease (CAD) as depicted at invasive coronary angiography. MATERIALS AND METHODS This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise or pharmacologic stress SPECT before and within 60 days of coronary angiography. Images from CT perfusion imaging, SPECT, and coronary angiography were interpreted at blinded, independent core laboratories. The primary diagnostic parameter was the area under the receiver operating characteristic curve (Az). Sensitivity and specificity were calculated with use of prespecified cutoffs. The reference standard was a stenosis of at least 50% at coronary angiography as determined with quantitative methods. RESULTS CAD was diagnosed in 229 of the 381 patients (60%). The per-patient sensitivity and specificity for the diagnosis of CAD (stenosis ≥50%) were 88% (202 of 229 patients) and 55% (83 of 152 patients), respectively, for CT perfusion imaging and 62% (143 of 229 patients) and 67% (102 of 152 patients) for SPECT, with Az values of 0.78 (95% confidence interval: 0.74, 0.82) and 0.69 (95% confidence interval: 0.64, 0.74) (P = .001). The sensitivity of CT perfusion imaging for single- and multivessel CAD was higher than that of SPECT, with sensitivities for left main, three-vessel, two-vessel, and one-vessel disease of 92%, 92%, 89%, and 83%, respectively, for CT perfusion imaging and 75%, 79%, 68%, and 41%, respectively, for SPECT. CONCLUSION The overall performance of myocardial CT perfusion imaging in the diagnosis of anatomic CAD (stenosis ≥50%), as demonstrated with the Az, was higher than that of SPECT and was driven in part by the higher sensitivity for left main and multivessel disease.

Collaboration


Dive into the Richard T. George's collaboration.

Top Co-Authors

Avatar

Joao A.C. Lima

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rajat Mittal

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Budoff

Los Angeles Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge