Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard T. Pomerantz is active.

Publication


Featured researches published by Richard T. Pomerantz.


Nature | 2008

The replisome uses mRNA as a primer after colliding with RNA polymerase

Richard T. Pomerantz; Mike O'Donnell

Replication forks are impeded by DNA damage and protein–nucleic acid complexes such as transcribing RNA polymerase. For example, head-on collision of the replisome with RNA polymerase results in replication fork arrest. However, co-directional collision of the replisome with RNA polymerase has little or no effect on fork progression. Here we examine co-directional collisions between a replisome and RNA polymerase in vitro. We show that the Escherichia coli replisome uses the RNA transcript as a primer to continue leading-strand synthesis after the collision with RNA polymerase that is displaced from the DNA. This action results in a discontinuity in the leading strand, yet the replisome remains intact and bound to DNA during the entire process. These findings underscore the notable plasticity by which the replisome operates to circumvent obstacles in its path and may explain why the leading strand is synthesized discontinuously in vivo.


Nature Structural & Molecular Biology | 2015

Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ

Tatiana Kent; Gurushankar Chandramouly; Shane McDevitt; Ahmet Yunus Ozdemir; Richard T. Pomerantz

Microhomology-mediated end-joining (MMEJ) is an error-prone alternative double-strand break–repair pathway that uses sequence microhomology to recombine broken DNA. Although MMEJ has been implicated in cancer development, the mechanism of this pathway is unknown. We demonstrate that purified human DNA polymerase θ (Polθ) performs MMEJ of DNA containing 3′ single-strand DNA overhangs with ≥2 bp of homology, including DNA modeled after telomeres, and show that MMEJ is dependent on Polθ in human cells. Our data support a mechanism whereby Polθ facilitates end-joining and microhomology annealing, then uses the opposing overhang as a template in trans to stabilize the DNA synapse. Polθ exhibits a preference for DNA containing a 5′-terminal phosphate, similarly to polymerases involved in nonhomologous end-joining. Finally, we identify a conserved loop domain that is essential for MMEJ and higher-order structures of Polθ that probably promote DNA synapse formation.


Cell Cycle | 2010

What happens when replication and transcription complexes collide

Richard T. Pomerantz; Mike O'Donnell

The arrest of replication forks due to collisions with transcription complexes leads to genomic instability and cell death. Mechanisms that promote the progression of replication forks past transcription complexes are therefore essential for propagation and preservation of the genome. Recent studies of E. coli directly investigate the consequences of collisions of the replisome with RNAP polymerase (RNAP) in vitro and provide novel mechanisms by which these encounters may be resolved. Additionally, recent in vivo and in vitro studies support the longstanding hypothesis that auxiliary DNA helicases promote replication through roadblocks such as transcription complexes. Here we review past and recent advances that formulate our current understanding of how the bacterial replisome deals with transcription complexes along the path of chromosome duplication.


Chemistry & Biology | 2015

Small-Molecule Disruption of RAD52 Rings as a Mechanism for Precision Medicine in BRCA-Deficient Cancers

Gurushankar Chandramouly; Shane McDevitt; Katherine Sullivan; Tatiana Kent; Antonio Luz; J. Fraser Glickman; Mark Andrake; Tomasz Skorski; Richard T. Pomerantz

Suppression of RAD52 causes synthetic lethality in BRCA-deficient cells. Yet pharmacological inhibition of RAD52, which binds single-strand DNA (ssDNA) and lacks enzymatic activity, has not been demonstrated. Here, we identify the small molecule 6-hydroxy-DL-dopa (6-OH-dopa) as a major allosteric inhibitor of the RAD52 ssDNA binding domain. For example, we find that multiple small molecules bind to and completely transform RAD52 undecamer rings into dimers, which abolishes the ssDNA binding channel observed in crystal structures. 6-OH-Dopa also disrupts RAD52 heptamer and undecamer ring superstructures, and suppresses RAD52 recruitment and recombination activity in cells with negligible effects on other double-strand break repair pathways. Importantly, we show that 6-OH-dopa selectively inhibits the proliferation of BRCA-deficient cancer cells, including those obtained from leukemia patients. Taken together, these data demonstrate small-molecule disruption of RAD52 rings as a promising mechanism for precision medicine in BRCA-deficient cancers.


eLife | 2016

Polymerase θ is a robust terminal transferase that oscillates between three different mechanisms during end-joining

Tatiana Kent; Pedro A. Mateos-Gomez; Agnel Sfeir; Richard T. Pomerantz

DNA polymerase θ (Polθ) promotes insertion mutations during alternative end-joining (alt-EJ) by an unknown mechanism. Here, we discover that mammalian Polθ transfers nucleotides to the 3’ terminus of DNA during alt-EJ in vitro and in vivo by oscillating between three different modes of terminal transferase activity: non-templated extension, templated extension in cis, and templated extension in trans. This switching mechanism requires manganese as a co-factor for Polθ template-independent activity and allows for random combinations of templated and non-templated nucleotide insertions. We further find that Polθ terminal transferase activity is most efficient on DNA containing 3’ overhangs, is facilitated by an insertion loop and conserved residues that hold the 3’ primer terminus, and is surprisingly more proficient than terminal deoxynucleotidyl transferase. In summary, this report identifies an unprecedented switching mechanism used by Polθ to generate genetic diversity during alt-EJ and characterizes Polθ as among the most proficient terminal transferases known. DOI: http://dx.doi.org/10.7554/eLife.13740.001


Nature Structural & Molecular Biology | 2013

Preferential D-loop extension by a translesion DNA polymerase underlies error-prone recombination

Richard T. Pomerantz; Isabel Kurth; Myron F. Goodman; Mike O'Donnell

Although homologous recombination is considered an accurate form of DNA repair, genetics suggest that the Escherichia coli translesion DNA polymerase IV (Pol IV, also known as DinB) promotes error-prone recombination during stress, which allows cells to overcome adverse conditions. However, how Pol IV functions and is regulated during recombination under stress is unknown. We show that Pol IV is highly proficient in error-prone recombination and is preferentially recruited to displacement loops (D loops) at stress-induced concentrations in vitro. We also found that high-fidelity Pol II switches to exonuclease mode at D loops, which is stimulated by topological stress and reduced deoxyribonucleotide pool concentration during stationary phase. The exonuclease activity of Pol II enables it to compete with Pol IV, which probably suppresses error-prone recombination. These findings indicate that preferential D-loop extension by Pol IV facilitates error-prone recombination and explain how Pol II reduces such errors in vivo.


Nature Structural & Molecular Biology | 2017

The helicase domain of Polθ counteracts RPA to promote alt-NHEJ

Pedro A. Mateos-Gomez; Tatiana Kent; Sarah K Deng; Shane McDevitt; Ekaterina Kashkina; Trung M. Hoang; Richard T. Pomerantz; Agnel Sfeir

Mammalian polymerase theta (Polθ) is a multifunctional enzyme that promotes error-prone DNA repair by alternative nonhomologous end joining (alt-NHEJ). Here we present structure–function analyses that reveal that, in addition to the polymerase domain, Polθ-helicase activity plays a central role during double-strand break (DSB) repair. Our results show that the helicase domain promotes chromosomal translocations by alt-NHEJ in mouse embryonic stem cells and also suppresses CRISPR–Cas9- mediated gene targeting by homologous recombination (HR). In vitro assays demonstrate that Polθ-helicase activity facilitates the removal of RPA from resected DSBs to allow their annealing and subsequent joining by alt-NHEJ. Consistent with an antagonistic role for RPA during alt-NHEJ, inhibition of RPA1 enhances end joining and suppresses recombination. Taken together, our results reveal that the balance between HR and alt-NHEJ is controlled by opposing activities of Polθ and RPA, providing further insight into the regulation of repair-pathway choice in mammalian cells.


Virology | 2017

PARP1 restricts Epstein Barr Virus lytic reactivation by binding the BZLF1 promoter

Lena N. Lupey-Green; Stephanie A. Moquin; Kayla A. Martin; Shane McDevitt; Michael Hulse; Lisa B. Caruso; Richard T. Pomerantz; Jj L. Miranda; Italo Tempera

The Epstein Barr virus (EBV) genome persists in infected host cells as a chromatinized episome and is subject to chromatin-mediated regulation. Binding of the host insulator protein CTCF to the EBV genome has an established role in maintaining viral latency type, and in other herpesviruses, loss of CTCF binding at specific regions correlates with viral reactivation. Here, we demonstrate that binding of PARP1, an important cofactor of CTCF, at the BZLF1 lytic switch promoter restricts EBV reactivation. Knockdown of PARP1 in the Akata-EBV cell line significantly increases viral copy number and lytic protein expression. Interestingly, CTCF knockdown has no effect on viral reactivation, and CTCF binding across the EBV genome is largely unchanged following reactivation. Moreover, EBV reactivation attenuates PARP activity, and Zta expression alone is sufficient to decrease PARP activity. Here we demonstrate a restrictive function of PARP1 in EBV lytic reactivation.


Nucleic Acids Research | 2016

DNA polymerase θ specializes in incorporating synthetic expanded-size (xDNA) nucleotides

Tatiana Kent; Timur Rusanov; Trung M. Hoang; Willem A. Velema; Andrew T. Krueger; William C. Copeland; Eric T. Kool; Richard T. Pomerantz

DNA polymerase θ (Polθ) is a unique A-family polymerase that is essential for alternative end-joining (alt-EJ) of double-strand breaks (DSBs) and performs translesion synthesis. Because Polθ is highly expressed in cancer cells, confers resistance to ionizing radiation and chemotherapy agents, and promotes the survival of homologous recombination (HR) deficient cells, it represents a promising new cancer drug target. As a result, identifying substrates that are selective for this enzyme is a priority. Here, we demonstrate that Polθ efficiently and selectively incorporates into DNA large benzo-expanded nucleotide analogs (dxAMP, dxGMP, dxTMP, dxAMP) which exhibit canonical base-pairing and enhanced base stacking. In contrast, functionally related Y-family translesion polymerases exhibit a severely reduced ability to incorporate dxNMPs, and all other human polymerases tested from the X, B and A families fail to incorporate them under the same conditions as Polθ. We further find that Polθ is inhibited after multiple dxGMP incorporation events, and that Polθ efficiency for dxGMP incorporation approaches that of native dGMP. These data demonstrate a unique function for Polθ in incorporating synthetic large-sized nucleotides and suggest the future possibility of the use of dxG nucleoside or related prodrug analogs as selective inhibitors of Polθ activity.


Cell Cycle | 2013

DNA polymerases are error-prone at RecA-mediated recombination intermediates.

Richard T. Pomerantz; Myron F. Goodman; Mike O'Donnell

Genetic studies have suggested that Y-family translesion DNA polymerase IV (DinB) performs error-prone recombination-directed replication (RDR) under conditions of stress due to its ability to promote mutations during double-strand break (DSB) repair in growth-limited E. coli cells. In recent studies we have demonstrated that pol IV is preferentially recruited to D-loop recombination intermediates at stress-induced concentrations and is highly mutagenic during RDR in vitro. These findings verify longstanding genetic data that have implicated pol IV in promoting stress-induced mutagenesis at D-loops. In this Extra View, we demonstrate the surprising finding that A-family pol I, which normally exhibits high-fidelity DNA synthesis, is highly error-prone at D-loops like pol IV. These findings indicate that DNA polymerases are intrinsically error-prone at RecA-mediated D-loops and suggest that auxiliary factors are necessary for suppressing mutations during RDR in non-stressed proliferating cells.

Collaboration


Dive into the Richard T. Pomerantz's collaboration.

Top Co-Authors

Avatar

Mike O'Donnell

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Myron F. Goodman

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Kurth

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge