Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard T. Tregear is active.

Publication


Featured researches published by Richard T. Tregear.


Cell | 1999

Tomographic 3D Reconstruction of Quick-Frozen, Ca2+-Activated Contracting Insect Flight Muscle

Kenneth A. Taylor; Holger Schmitz; Mary C. Reedy; Yale E. Goldman; Clara Franzini-Armstrong; Hiroyuki Sasaki; Richard T. Tregear; K. J. V. Poole; Carmen Lucaveche; Robert J. Edwards; Li Fan Chen; Hanspeter Winkler; Michael K. Reedy

Motor actions of myosin were directly visualized by electron tomography of insect flight muscle quick-frozen during contraction. In 3D images, active cross-bridges are usually single myosin heads, bound preferentially to actin target zones sited midway between troponins. Active attached bridges (approximately 30% of all heads) depart markedly in axial and azimuthal angles from Rayments rigor acto-S1 model, one-third requiring motor domain (MD) tilting on actin, and two-thirds keeping rigor contact with actin while the light chain domain (LCD) tilts axially from approximately 105 degrees to approximately 70 degrees. The results suggest the MD tilts and slews on actin from weak to strong binding, followed by swinging of the LCD through an approximately 35 degrees axial angle, giving an approximately 13 nm interaction distance and an approximately 4-6 nm working stroke.


Biophysical Journal | 1975

Polarization from a Helix of Fluorophores and its Relation to that Obtained from Muscle

Richard T. Tregear; Robert A. Mendelson

Expressions for the polarization of fluorescence from fluorophores in a helical array have been obtained. These predictions have been compared with experimental data obtained by reacting fluorescent S-1 subfragments of myosin (extrinsically labeled with N-(iodoacetylaminoethyl)-5-napthylamine-1-sulfonic acid [1,5-IAEDANS]) with glycerated rabbit psoas fibers in rigor. A comparison with data obtained by directly labeling fibers with this fluorophore is also presented.


Proceedings of the Royal Society B: Biological Sciences | 1980

Interpretation of the low angle X-ray diffraction from insect flight muscle in rigor

Kenneth C. Holmes; Richard T. Tregear; John Barrington Leigh

The structure of insect flight muscle is formally described in terms of actin-based cross-bridges upon which successive symmetry operations are performed, in combination with a modulation function. The Fourier transform of the structure is generated by means of these steps. The model transform is fitted to the observed diffraction pattern from insect flight muscle in rigor and the position of the rigor cross-bridges deduced; they are found to lie across the long helix of actin monomers and to project away from the thin filament. The cross-bridges interact with approximately one-third of the actin monomers, and show a strong preference for a particular orientation between the thick and thin filaments.


Biophysical Journal | 1998

X-Ray Diffraction Indicates That Active Cross-Bridges Bind to Actin Target Zones in Insect Flight Muscle

Richard T. Tregear; Robert J. Edwards; Tom Irving; K. J. V. Poole; Mary C. Reedy; Holger Schmitz; Elizabeth Towns-Andrews; Michael K. Reedy

We report the first time-resolved study of the two-dimensional x-ray diffraction pattern during active contraction in insect flight muscle (IFM). Activation of demembranated Lethocerus IFM was triggered by 1.5-2.5% step stretches (risetime 10 ms; held for 1.5 s) giving delayed active tension that peaked at 100-200 ms. Bundles of 8-12 fibers were stretch-activated on SRS synchrotron x-ray beamline 16.1, and time-resolved changes in diffraction were monitored with a SRS 2-D multiwire detector. As active tension rose, the 14.5- and 7.2-nm meridionals fell, the first row line dropped at the 38.7 nm layer line while gaining a new peak at 19.3 nm, and three outer peaks on the 38.7-nm layer line rose. The first row line changes suggest restricted binding of active myosin heads to the helically preferred region in each actin target zone, where, in rigor, two-headed lead bridges bind, midway between troponin bulges that repeat every 38.7 nm. Halving this troponin repeat by binding of single active heads explains the intensity rise at 19.3 nm being coupled to a loss at 38.7 nm. The meridional changes signal movement of at least 30% of all myosin heads away from their axially ordered positions on the myosin helix. The 38.7- and 19.3-nm layer line changes signal stereoselective attachment of 7-23% of the myosin heads to the actin helix, although with too little ordering at 6-nm resolution to affect the 5.9-nm actin layer line. We conclude that stretch-activated tension of IFM is produced by cross-bridges that bind to rigors lead-bridge target zones, comprising < or = 1/3 of the 75-80% that attach in rigor.


Biophysical Journal | 2004

Cross-Bridge Number, Position, and Angle in Target Zones of Cryofixed Isometrically Active Insect Flight Muscle

Richard T. Tregear; Mary C. Reedy; Yale E. Goldman; Kenneth A. Taylor; Hanspeter Winkler; Clara Franzini-Armstrong; Hiroyuki Sasaki; Carmen Lucaveche; Michael K. Reedy

Electron micrographic tomograms of isometrically active insect flight muscle, freeze substituted after rapid freezing, show binding of single myosin heads at varying angles that is largely restricted to actin target zones every 38.7 nm. To quantify the parameters that govern this pattern, we measured the number and position of attached myosin heads by tracing cross-bridges through the three-dimensional tomogram from their origins on 14.5-nm-spaced shelves along the thick filament to their thin filament attachments in the target zones. The relationship between the probability of cross-bridge formation and axial offset between the shelf and target zone center was well fitted by a Gaussian distribution. One head of each myosin whose origin is close to an actin target zone forms a cross-bridge most of the time. The probability of cross-bridge formation remains high for myosin heads originating within 8 nm axially of the target zone center and is low outside 12 nm. We infer that most target zone cross-bridges are nearly perpendicular to the filaments (60% within 11 degrees ). The results suggest that in isometric contraction, most cross-bridges maintain tension near the beginning of their working stroke at angles near perpendicular to the filament axis. Moreover, in the absence of filament sliding, cross-bridges cannot change tilt angle while attached nor reach other target zones while detached, so may cycle repeatedly on and off the same actin target monomer.


PLOS ONE | 2010

Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

Shenping Wu; Jun Liu; Mary C. Reedy; Richard T. Tregear; Hanspeter Winkler; Clara Franzini-Armstrong; Hiroyuki Sasaki; Carmen Lucaveche; Yale E. Goldman; Michael K. Reedy; Kenneth A. Taylor

Background Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. Methodology We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the “target zone”, situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. Conclusion We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.


Journal of Molecular Biology | 1988

Two attached non-rigor crossbridge forms in insect flight muscle

Mary C. Reedy; Michael K. Reedy; Richard T. Tregear

We have performed thin-section electron microscopy on muscle fibers fixed in different mechanically monitored states, in order to identify structural changes in myosin crossbridges associated with force production and maintenance. Tension and stiffness of fibers from glycerinated Lethocerus flight muscle were monitored during a sequence of conditions using AMPPNP and then AMPPNP plus increasing concentrations of ethylene glycol, which brought fibers through a graded sequence from rigor relaxation. Two intermediate crossbridge forms distinct from the rigor or relaxed forms were observed. The first was produced by AMPPNP at 20 degrees C, which reduced isometric tension 60 to 70% below rigor level without reducing rigor stiffness. Electron microscopy of these fibers showed that, in spite of the drop in tension, no obvious change from the 45 degrees crossbridge angle characteristic of rigor occurred. However, the thick filament ends of the crossbridges were altered from their rigor positions, so that they now marked a 14.5 nm repeat, and formed four separate origins at each crossbridge level. The bridges were also less slewed and bent than rigor bridges, as seen in transverse sections. The second crossbridge form was seen in glycol-AMPPNP at 4 degrees C, just below the glycol concentration that produced mechanical relaxation. These fibers retained 90% of rigor stiffness at 40 Hz oscillation, but would not bear sustained tension. Stiffness was also high in the presence of calcium at room temperature under similar conditions. Electron microscopy showed crossbridges projecting from the thick filaments at an angle that centered around 90 degrees, rather than the 45 degree angle familiar from rigor. This coupling of relaxed appearance with persistent stiffness suggests that the 90 degree form may represent a weakly attached crossbridge state like that proposed to precede force development in current models of the crossbridge power stroke.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Reverse actin sliding triggers strong myosin binding that moves tropomyosin

Tanya Bekyarova; Mary C. Reedy; Bruce A.J. Baumann; Richard T. Tregear; Andrew B. Ward; U. Krzic; K. M. Prince; Robert J. Perz-Edwards; Massimo Reconditi; David Gore; Tom Irving; Michael K. Reedy

Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the “steric blocking” mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca2+ with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at high [Ca2+], and stretch activation, at lower [Ca2+], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored “actin target zones.” Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca2+] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca2+], Vi-“paralyzed” fibers produce force substantially above passive response at pCa ∼ 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding “brakes” by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.


PLOS ONE | 2011

Structural Changes in Isometrically Contracting Insect Flight Muscle Trapped Following a Mechanical Perturbation.

Shenping Wu; Jun Liu; Mary C. Reedy; Robert J. Perz-Edwards; Richard T. Tregear; Hanspeter Winkler; Clara Franzini-Armstrong; Hiroyuki Sasaki; Carmen Lucaveche; Yale E. Goldman; Michael K. Reedy; Kenneth A. Taylor

The application of rapidly applied length steps to actively contracting muscle is a classic method for synchronizing the response of myosin cross-bridges so that the average response of the ensemble can be measured. Alternatively, electron tomography (ET) is a technique that can report the structure of the individual members of the ensemble. We probed the structure of active myosin motors (cross-bridges) by applying 0.5% changes in length (either a stretch or a release) within 2 ms to isometrically contracting insect flight muscle (IFM) fibers followed after 5–6 ms by rapid freezing against a liquid helium cooled copper mirror. ET of freeze-substituted fibers, embedded and thin-sectioned, provides 3-D cross-bridge images, sorted by multivariate data analysis into ∼40 classes, distinct in average structure, population size and lattice distribution. Individual actin subunits are resolved facilitating quasi-atomic modeling of each class average to determine its binding strength (weak or strong) to actin. ∼98% of strong-binding acto-myosin attachments present after a length perturbation are confined to “target zones” of only two actin subunits located exactly midway between successive troponin complexes along each long-pitch helical repeat of actin. Significant changes in the types, distribution and structure of actin-myosin attachments occurred in a manner consistent with the mechanical transients. Most dramatic is near disappearance, after either length perturbation, of a class of weak-binding cross-bridges, attached within the target zone, that are highly likely to be precursors of strong-binding cross-bridges. These weak-binding cross-bridges were originally observed in isometrically contracting IFM. Their disappearance following a quick stretch or release can be explained by a recent kinetic model for muscle contraction, as behaviour consistent with their identification as precursors of strong-binding cross-bridges. The results provide a detailed model for contraction in IFM that may be applicable to contraction in other types of muscle.


Nature | 1965

Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle

Michael K. Reedy; Kenneth C. Holmes; Richard T. Tregear

Collaboration


Dive into the Richard T. Tregear's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yale E. Goldman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Sasaki

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge