Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Tavaré is active.

Publication


Featured researches published by Richard Tavaré.


Bioconjugate Chemistry | 2011

99mTc-Bisphosphonate-Iron Oxide Nanoparticle Conjugates for Dual-Modality Biomedical Imaging

Rafael T. M. de Rosales; Richard Tavaré; Arnaud Pierre Alain Glaria; Gopal Varma; Andrea Protti; Philip J. Blower

The combination of radionuclide-based imaging modalities such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) with magnetic resonance imaging (MRI) is likely to become the next generation of clinical scanners. Hence, there is a growing interest in the development of SPECT- and PET-MRI agents. To this end, we report a new class of dual-modality imaging agents based on the conjugation of radiolabeled bisphosphonates (BP) directly to the surface of superparamagnetic iron oxide (SPIO) nanoparticles. We demonstrate the high potential of BP-iron oxide conjugation using (⁹⁹m)Tc-dipicolylamine(DPA)-alendronate, a BP-SPECT agent, and Endorem/Feridex, a liver MRI contrast agent based on SPIO. The labeling of SPIOs with (⁹⁹m)Tc-DPA-alendronate can be performed in one step at room temperature if the SPIO is not coated with an organic polymer. Heating is needed if the nanoparticles are coated, as long as the coating is weakly bound as in the case of dextran in Endorem. The size of the radiolabeled Endorem (⁹⁹m)Tc-DPA-ale-Endorem) was characterized by TEM (5 nm, Fe₃O₄ core) and DLS (106 ± 60 nm, Fe₃O₄ core + dextran). EDX, Dittmer-Lester, and radiolabeling studies demonstrate that the BP is bound to the nanoparticles and that it binds to the Fe₃O₄ cores of Endorem, and not its dextran coating. The bimodal imaging capabilities and excellent stability of these nanoparticles were confirmed using MRI and nanoSPECT-CT imaging, showing that (⁹⁹m)Tc and Endorem co-localize in the liver and spleen In Vivo, as expected for particles of the composition and size of (⁹⁹m)Tc-DPA-ale-Endorem. To the best of our knowledge, this is the first example of radiolabeling SPIOs with BP conjugates and the first example of radiolabeling SPIO nanoparticles directly onto the surface of the iron oxide core, and not its coating. This work lays down the basis for a new generation of SPECT/PET-MR imaging agents in which the BP group could be used to attach functionality to provide targeting, stealth/stability, and radionuclides to Fe₃O₄ nanoparticles using very simple methodology readily amenable to GMP.


Angewandte Chemie | 2011

Synthesis of 64CuII–Bis(dithiocarbamatebisphosphonate) and Its Conjugation with Superparamagnetic Iron Oxide Nanoparticles: In Vivo Evaluation as Dual-Modality PET–MRI Agent

Rafael T. M. de Rosales; Richard Tavaré; Rowena L. Paul; Maite Jauregui-Osoro; Andrea Protti; Arnaud Pierre Alain Glaria; Gopal Varma; Istvan Szanda; Philip J. Blower

The synergistic combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) is likely to become the next generation of dual-modality scanners in medical imaging. These instruments will provide us with accurate diagnoses thanks to the sensitive and quantifiable signal of PET and the high soft-tissue resolution of MRI. Furthermore, patients will receive less radiation dose and spend less time in the procedure relative to current dual-modality scanners (e.g. PET–computed tomography (CT)). As a consequence, there has been increasing interest recently in the development of dual-modality PET–MRI agents.[1]


Chemical Communications | 2011

Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands

David J. Berry; Yongmin Ma; James R. Ballinger; Richard Tavaré; Alexander Koers; Kavitha Sunassee; Tao Zhou; Saima Nawaz; Gregory Mullen; Robert C. Hider; Philip J. Blower

A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of (68)Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration.


Cancer Research | 2016

An Effective Immuno-PET Imaging Method to Monitor CD8-Dependent Responses to Immunotherapy

Richard Tavaré; Helena Escuin-Ordinas; Stephen Mok; Melissa N. McCracken; Kirstin A. Zettlitz; Felix B. Salazar; Owen N. Witte; Antoni Ribas; Anna M. Wu

The rapidly advancing field of cancer immunotherapy is currently limited by the scarcity of noninvasive and quantitative technologies capable of monitoring the presence and abundance of CD8(+) T cells and other immune cell subsets. In this study, we describe the generation of (89)Zr-desferrioxamine-labeled anti-CD8 cys-diabody ((89)Zr-malDFO-169 cDb) for noninvasive immuno-PET tracking of endogenous CD8(+) T cells. We demonstrate that anti-CD8 immuno-PET is a sensitive tool for detecting changes in systemic and tumor-infiltrating CD8 expression in preclinical syngeneic tumor immunotherapy models including antigen-specific adoptive T-cell transfer, agonistic antibody therapy (anti-CD137/4-1BB), and checkpoint blockade antibody therapy (anti-PD-L1). The ability of anti-CD8 immuno-PET to provide whole body information regarding therapy-induced alterations of this dynamic T-cell population provides new opportunities to evaluate antitumor immune responses of immunotherapies currently being evaluated in the clinic.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Engineered antibody fragments for immuno-PET imaging of endogenous CD8+ T cells in vivo

Richard Tavaré; Melissa N. McCracken; Kirstin A. Zettlitz; Scott Knowles; Felix B. Salazar; Tove Olafsen; Owen N. Witte; Anna M. Wu

Significance Anti-CD8 immuno-PET imaging agents provide the potential to monitor the localization, migration, and expansion of CD8-expressing cells noninvasively in vivo. Shown here is the successful generation of functional anti-CD8 imaging agents based on engineered antibodies for use in a variety of preclinical disease and immunotherapeutic models. The noninvasive detection and quantification of CD8+ T cells in vivo are important for both the detection and staging of CD8+ lymphomas and for the monitoring of successful cancer immunotherapies, such as adoptive cell transfer and antibody-based immunotherapeutics. Here, antibody fragments are constructed to target murine CD8 to obtain rapid, high-contrast immuno-positron emission tomography (immuno-PET) images for the detection of CD8 expression in vivo. The variable regions of two anti-murine CD8-depleting antibodies (clones 2.43 and YTS169.4.2.1) were sequenced and reformatted into minibody (Mb) fragments (scFv-CH3). After production and purification, the Mbs retained their antigen specificity and bound primary CD8+ T cells from the thymus, spleen, lymph nodes, and peripheral blood. Importantly, engineering of the parental antibodies into Mbs abolished the ability to deplete CD8+ T cells in vivo. The Mbs were subsequently conjugated to S-2-(4-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid for 64Cu radiolabeling. The radiotracers were injected i.v. into antigen-positive, antigen-negative, immunodeficient, antigen-blocked, and antigen-depleted mice to evaluate specificity of uptake in lymphoid tissues by immuno-PET imaging and ex vivo biodistribution. Both 64Cu-radiolabeled Mbs produced high-contrast immuno-PET images 4 h postinjection and showed specific uptake in the spleen and lymph nodes of antigen-positive mice.


Bioconjugate Chemistry | 2009

Efficient site-specific radiolabeling of a modified C2A domain of synaptotagmin I with [99mTc(CO)3]+: a new radiopharmaceutical for imaging cell death.

Richard Tavaré; Rafael T. M. de Rosales; Philip J. Blower; Gregory Mullen

We describe the design and synthesis of a new Tc-99m labeled bioconjugate for cell-death imaging, based on C2A, the phosphatidylserine (PS)-binding domain of rat synaptotagmin I. Since several lysine residues in this protein are critical for PS binding, we engineered a new protein, C2AcH, to include the C-terminal sequence CKLAAALEHHHHHH, incorporating a free cysteine (for site-specific covalent modification) and a hexahistidine tag (for site-specific radiolabeling with [99mTc(CO)3(OH2)3]+). We also engineered a second derivative, C2Ac, in which the C-terminal sequence included only the C-terminal cysteine. These proteins were characterized by electrospray mass spectrometry, SDS/PAGE, and size exclusion chromatography and radiolabeled with [99mTc(CO)3(OH2)3]+. Conjugates of the proteins with the rhenium analogue [Re(CO)3(OH2)3]+ were also synthesized. Site-specific labeling was confirmed by performing a tryptic digest of rhenium tricarbonyl-labeled C2AcH, and only peptides containing the His-tag contained the [Re(CO)3]+. The labeled proteins were tested for binding to red blood cells (RBC) with exposed PS in a calcium dependent manner. Labeling 100 microg of C2AcH with [99mTc(CO)3(OH2)3]+ at 37 degrees C for 30 min gave a radiochemical yield of > 96%. However, C2AcH that had first been conjugated with fluorescein maleimide or iodoacetamide via the Cys residue gave only 50% and 83% radiochemical yield, respectively, after incubation for 30 min at 37 degrees C. Serum stability results indicated that >95% of radiolabeled C2AcH remained stable for at least 18 h at 37 degrees C. Site-specifically labeled C2AcH exhibited calcium-dependent binding to the PS on the RBC, whereas a nonspecifically modified derivative, C2AcH-B, in which lysines had been modified with benzyloxycarbonyloxy, did not. We conclude that (i) the combination of Cys and a His-tag greatly enhances the rate and efficiency of labeling with [99mTc(CO)3(OH2)3]+ compared to either the His-tag or the Cys alone, and this sequence deserves further evaluation as a radiolabeling tag; (ii) non-site-specific modification of C2A via lysine residues impairs target binding affinity; (iii) 99mTc-C2AcH has excellent radiolabeling, stability and PS binding characteristics and warrants in vivo evaluation as a cell-death imaging agent.


The Journal of Nuclear Medicine | 2014

Quantitative ImmunoPET of Prostate Cancer Xenografts with 89Zr- and 124I-Labeled Anti-PSCA A11 Minibody

Scott Knowles; Kirstin A. Zettlitz; Richard Tavaré; Matthew M. Rochefort; Felix B. Salazar; David Stout; Paul J. Yazaki; Robert E. Reiter; Anna M. Wu

Prostate stem cell antigen (PSCA) is expressed on the cell surface in 83%–100% of local prostate cancers and 87%–100% of prostate cancer bone metastases. In this study, we sought to develop immunoPET agents using 124I- and 89Zr-labeled anti-PSCA A11 minibodies (scFv-CH3 dimer, 80 kDa) and evaluate their use for quantitative immunoPET imaging of prostate cancer. Methods: A11 anti-PSCA minibody was alternatively labeled with 124I- or 89Zr-desferrioxamine and injected into mice bearing either matched 22Rv1 and 22Rv1×PSCA or LAPC-9 xenografts. Small-animal PET data were obtained and quantitated with and without recovery coefficient–based partial-volume correction, and the results were compared with ex vivo biodistribution. Results: Rapid and specific localization to PSCA-positive tumors and high-contrast imaging were observed with both 124I- and 89Zr-labeled A11 anti-PSCA minibody. However, the differences in tumor uptake and background uptake of the radiotracers resulted in different levels of imaging contrast. The nonresidualizing 124I-labeled minibody had lower tumor uptake (3.62 ± 1.18 percentage injected dose per gram [%ID/g] 22Rv1×PSCA, 3.63 ± 0.59 %ID/g LAPC-9) than the residualizing 89Zr-labeled minibody (7.87 ± 0.52 %ID/g 22Rv1×PSCA, 9.33 ± 0.87 %ID/g LAPC-9, P < 0.0001 for each), but the 124I-labeled minibody achieved higher imaging contrast because of lower nonspecific uptake and better tumor–to–soft-tissue ratios (22Rv1×PSCA:22Rv1 positive-to-negative tumor, 13.31 ± 5.59 124I-A11 and 4.87 ± 0.52 89Zr-A11, P = 0.02). Partial-volume correction was found to greatly improve the correspondence between small-animal PET and ex vivo quantification of tumor uptake for immunoPET imaging with both radionuclides. Conclusion: Both 124I- and 89Zr-labeled A11 anti-PSCA minibody showed high-contrast imaging of PSCA expression in vivo. However, the 124I-labeled A11 minibody was found to be the superior imaging agent because of lower nonspecific uptake and higher tumor–to–soft-tissue contrast. Partial-volume correction was found to be essential for robust quantification of immunoPET imaging with both 124I- and 89Zr-labeled A11 minibody.


The Journal of Nuclear Medicine | 2015

Immuno-PET of Murine T Cell Reconstitution Postadoptive Stem Cell Transplantation Using Anti-CD4 and Anti-CD8 Cys-Diabodies

Richard Tavaré; Melissa N. McCracken; Kirstin A. Zettlitz; Felix B. Salazar; Tove Olafsen; Owen N. Witte; Anna M. Wu

The proliferation and trafficking of T lymphocytes in immune responses are crucial events in determining inflammatory responses. To study whole-body T lymphocyte dynamics noninvasively in vivo, we generated anti-CD4 and -CD8 cys-diabodies (cDbs) derived from the parental antibody hybridomas GK1.5 and 2.43, respectively, for 89Zr-immuno-PET detection of helper and cytotoxic T cell populations. Methods: Anti-CD4 and -CD8 cDbs were engineered, produced via mammalian expression, purified using immobilized metal affinity chromatography, and characterized for T cell binding. The cDbs were site-specifically conjugated to maleimide-desferrioxamine for 89Zr radiolabeling and subsequent small-animal PET/CT acquisition and ex vivo biodistribution in both wild-type mice and a model of hematopoietic stem cell (HSC) transplantation. Results: Immuno-PET and biodistribution studies demonstrate targeting and visualization of CD4 and CD8 T cell populations in vivo in the spleen and lymph nodes of wild-type mice, with specificity confirmed through in vivo blocking and depletion studies. Subsequently, a murine model of HSC transplantation demonstrated successful in vivo detection of T cell repopulation at 2, 4, and 8 wk after HSC transplantation using the 89Zr-radiolabeled anti-CD4 and -CD8 cDbs. Conclusion: These newly developed anti-CD4 and -CD8 immuno-PET reagents represent a powerful resource to monitor T cell expansion, localization, and novel engraftment protocols. Future potential applications of T cell–targeted immuno-PET include monitoring immune cell subsets in response to immunotherapy, autoimmunity, and lymphoproliferative disorders, contributing overall to preclinical immune cell monitoring.


PLOS ONE | 2011

In vivo SPECT reporter gene imaging of regulatory T cells

Ehsan Sharif-Paghaleh; Kavitha Sunassee; Richard Tavaré; Kulachelvy Ratnasothy; Alexander Koers; Niwa Ali; Rowa Alhabbab; Philip J. Blower; Robert I. Lechler; Lesley A. Smyth; Gregory Mullen; Giovanna Lombardi

Regulatory T cells (Tregs) were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT) has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4+CD25+FoxP3+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS) and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate (99mTcO4 −) and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6) mice by SPECT/CT using 99mTcO4 −. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.


PLOS ONE | 2011

Monitoring of In Vivo Function of Superparamagnetic Iron Oxide Labelled Murine Dendritic Cells during Anti- Tumour Vaccination

Richard Tavaré; Pervinder Sagoo; Gopal Varama; Yakup Tanriver; Alice Warely; Sandra S. Diebold; Richard Southworth; Tobias Schaeffter; Robert I. Lechler; Reza Razavi; Giovanna Lombardi; Gregory Mullen

Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4+ T cells but, most importantly, they primed cytotoxic CD8+ T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer.

Collaboration


Dive into the Richard Tavaré's collaboration.

Top Co-Authors

Avatar

Anna M. Wu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Owen N. Witte

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Knowles

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge