Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Friesen is active.

Publication


Featured researches published by Richard W. Friesen.


Bioorganic & Medicinal Chemistry Letters | 1998

Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530

Daniel Dube; Marc Blouin; Christine Brideau; Chi-Chung Chan; Sylvie Desmarais; Diane Ethier; Jean-Pierre Falgueyret; Richard W. Friesen; Mario Girard; Yves Girard; Jocelyne Guay; Denis Riendeau; Philip Tagari; Robert N. Young

Leukotriene biosynthesis inhibitors have potential as new therapeutic agents for asthma and inflammatory diseases. A series of novel substituted 2-cyanoquinolines have been synthesized and the structure activity relationships were evaluated with respect to their ability to inhibit the formation of leukotrienes via the 5-lipoxygenase enzyme. [1S,5R]-2-Cyano-4-(3-furyl)-7-¿3-fluoro-5-[3-(3 alpha-hydroxy-6,8-dioxabicyclo[3.2.1]-octanyl)]phenoxymethyl ¿quinoline (L-746,530) 3 represents a distinct class of inhibitors and possesses in vitro and in vivo potency comparable or superior to naphthalenic analog (L-739,010) 2.


Tetrahedron Letters | 1994

Biaryl synthesis via suzuki coupling on a solid support

Richard Frenette; Richard W. Friesen

Abstract Aryl boronic acids undergo a facile and efficient palladium catalyzed cross-coupling reaction with aryl bromides and iodides that are bound to a Merrifield resin. Simple transesterification releases the biaryl products from the solid support in excellent purity and yield.


Journal of Pharmacology and Experimental Therapeutics | 2008

MF63 [2-(6-Chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a Selective Microsomal Prostaglandin E Synthase-1 Inhibitor, Relieves Pyresis and Pain in Preclinical Models of Inflammation

Daigen Xu; Steven E. Rowland; Patsy Clark; André Giroux; Bernard Cote; Sébastien Guiral; Myriam Salem; Yves Ducharme; Richard W. Friesen; Nathalie Méthot; Joseph A. Mancini; Laurent Audoly; Denis Riendeau

Microsomal prostaglandin E synthase-1 (mPGES-1) is a terminal prostaglandin E2 (PGE2) synthase in the cyclooxygenase pathway. Inhibitors of mPGES-1 may block PGE2 production and relieve inflammatory symptoms. To test the hypothesis, we evaluated the antipyretic and analgesic properties of a novel and selective mPGES-1 inhibitor, MF63 [2-(6-chloro-1H-phenanthro-[9,10-d]imidazol-2-yl)isophthalonitrile], in animal models of inflammation. MF63 potently inhibited the human mPGES-1 enzyme (IC50 = 1.3 nM), with a high degree (>1000-fold) of selectivity over other prostanoid synthases. In rodent species, MF63 strongly inhibited guinea pig mPGES-1 (IC50 = 0.9 nM) but not the mouse or rat enzyme. When tested in the guinea pig and a knock-in (KI) mouse expressing human mPGES-1, the compound selectively suppressed the synthesis of PGE2, but not other prostaglandins inhibitable by nonsteroidal anti-inflammatory drugs (NSAIDs), yet retained NSAID-like efficacy at inhibiting lipopolysaccharide-induced pyresis, hyperalgesia, and iodoacetate-induced osteoarthritic pain. In addition, MF63 did not cause NSAID-like gastrointestinal toxic effects, such as mucosal erosions or leakage in the KI mice or nonhuman primates, although it markedly inhibited PGE2 synthesis in the KI mouse stomach. Our data demonstrate that mPGES-1 inhibition leads to effective relief of both pyresis and inflammatory pain in preclinical models of inflammation and may be a useful approach for treating inflammatory diseases.


Bioorganic & Medicinal Chemistry Letters | 1998

2-Pyridinyl-3-(4-methylsulfonyl)phenylpyridines: Selective and orally active cyclooxygenase-2 inhibitors

Richard W. Friesen; Christine Brideau; Chi-Chung Chan; S. Charleson; Denis Deschenes; Daniel Dube; Diane Ethier; Rejean Fortin; Jacques Yves Gauthier; Yves Girard; Robert Gordon; Gillian Greig; Denis Riendeau; Chantal Savoie; Zhaoyin Wang; Elizabeth Wong; Denise M. Visco; Li Jing Xu; Robert N. Young

A series of novel 2-pyridinyl-3-(4-methylsulfonyl)phenylpyridines has been synthesized and evaluated with respect to their ability to inhibit the isozymes of cyclooxygenase, COX-1, and COX-2. Optimum COX-2 activity is observed by introduction of a substituent at C5 of the central pyridine. 5- Chloro-3-(4-methylsulfonyl)phenyl-2-(2-methyl-5-pyridinyl)pyridine 33 was identified as the optimum compound in this series.


Bioorganic & Medicinal Chemistry Letters | 2009

Discovery of disubstituted phenanthrene imidazoles as potent, selective and orally active mPGES-1 inhibitors

André Giroux; Louise Boulet; Christine Brideau; Anh Chau; David Claveau; Bernard Cote; Diane Ethier; Richard Frenette; Marc Gagnon; Jocelyne Guay; Sébastien Guiral; Joseph A. Mancini; Evelyn Martins; Frédéric Massé; Nathalie Méthot; Denis Riendeau; Joel Rubin; Daigen Xu; Hongping Yu; Yves Ducharme; Richard W. Friesen

Phenanthrene imidazoles 26 and 44 have been identified as novel potent, selective and orally active mPGES-1 inhibitors. These inhibitors are significantly more potent than the previously reported chlorophenanthrene imidazole 1 (MF63) with a human whole blood IC50 of 0.20 and 0.14 microM, respectively. It exhibited a significant analgesic effect in a guinea pig hyperalgesia model at oral doses as low as 14 mg/kg. Both active and selective mPGES-1 inhibitors (26 and 44) have a relatively distinct pharmacokinetic profile and are suitable for clinical development.


Bioorganic & Medicinal Chemistry Letters | 2001

In vitro metabolism considerations, including activity testing of metabolites, in the discovery and selection of the COX-2 inhibitor etoricoxib (MK-0663)

Nathalie Chauret; James A. Yergey; Christine Brideau; Richard W. Friesen; Joseph A. Mancini; Denis Riendeau; José M. Silva; Angela Styhler; Laird A. Trimble; Deborah A. Nicoll-Griffith

Characterization of the metabolites of the COX-2 inhibitor etoricoxib (MK-0663 and L-791,456) produced in vitro indicate formation of an N-oxide pyridine and hydroxymethyl pyridine that can further be glucuronidated or oxidized to an acid. Significant turnover is observed in human hepatocytes. Several CYPs are involved in the oxidative biotranformations and, from in vitro studies, etoricoxib is not a potent CYP3A4 inducer or inhibitor. Based on an in vitro whole blood assay, none of the metabolites of etoricoxib inhibits COX-1 or contributes significantly to the inhibition of COX-2.


ACS Medicinal Chemistry Letters | 2010

The Discovery of Setileuton, a Potent and Selective 5-Lipoxygenase Inhibitor

Yves Ducharme; Marc Blouin; Christine Brideau; Anne Châteauneuf; Yves Gareau; Erich L. Grimm; Helene Juteau; Sebastien Laliberte; Bruce Mackay; Frédéric Massé; Marc Ouellet; Myriam Salem; Angela Styhler; Richard W. Friesen

The discovery of novel and selective inhibitors of human 5-lipoxygenase (5-LO) is described. These compounds are potent, orally bioavailable, and active at inhibiting leukotriene biosynthesis in vivo in a dog PK/PD model. A major focus of the optimization process was to reduce affinity for the human ether-a-go-go gene potassium channel while preserving inhibitory potency on 5-LO. These efforts led to the identification of inhibitor (S)-16 (MK-0633, setileuton), a compound selected for clinical development for the treatment of respiratory diseases.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of MK-7246, a selective CRTH2 antagonist for the treatment of respiratory diseases

Michel Gallant; Christian Beaulieu; Carl Berthelette; John Colucci; Michael A. Crackower; Chad Dalton; Danielle Denis; Yves Ducharme; Richard W. Friesen; Daniel Guay; François G. Gervais; Martine Hamel; Robert Houle; Connie M. Krawczyk; Birgit Kosjek; Stephen Lau; Yves Leblanc; Ernest E. Lee; Jean-François Lévesque; Christophe Mellon; Carmela Molinaro; Wayne Mullet; Gary O’Neill; Paul D. O’Shea; Nicole Sawyer; Susan Sillaots; Daniel Simard; Deborah Slipetz; Rino Stocco; Dan Sørensen

In this manuscript we wish to report the discovery of MK-7246 (4), a potent and selective CRTH2 (DP2) antagonist. SAR studies leading to MK-7246 along with two synthetic sequences enabling the preparation of this novel class of CRTH2 antagonist are reported. Finally, the pharmacokinetic and metabolic profile of MK-7246 is disclosed.


Bioorganic & Medicinal Chemistry Letters | 1996

NOVEL 1,2-DIARYLCYCLOBUTENES : SELECTIVE AND ORALLY ACTIVE COX-2 INHIBITORS

Richard W. Friesen; Daniel Dube; Rejean Fortin; Richard Frenette; Sylvie Prescott; Wanda Cromlish; Gillian Greig; Stacia Kargman; Elizabeth Wong; Chi-Chung Chan; Robert Gordon; Li Jing Xu; Denis Riendeau

A series of novel 2,3-diaryl-2-cyclobuten-l-ones have been synthesized and have been evaluated with respect to their ability to inhibit the isozymes of cyclooxygenase, COX-1 and COX-2. 4,4-Dimethyl-2- phenyl-3-(4-(methylsulfonyl)phenyl)cyclobutenone 22 was found to be highly selective for inhibition of COX-2 and was orally active (EDs0 = 2.4 mg/kg) in the rat paw edema model. Copyright


Bioorganic & Medicinal Chemistry Letters | 2010

Biarylimidazoles as inhibitors of microsomal prostaglandin E2 synthase-1

Tom Wu; Helene Juteau; Yves Ducharme; Richard W. Friesen; Sébastien Guiral; Lynn Dufresne; Hugo Poirier; Myriam Salem; Denis Riendeau; Joseph A. Mancini; Christine Brideau

Microsomal prostaglandin E(2) synthase (mPGES-1) represents a potential target for novel analgesic and anti-inflammatory agents. High-throughput screening identified several leads of mPGES-1 inhibitors which were further optimized for potency and selectivity. A series of inhibitors bearing a biaryl imidazole scaffold exhibits excellent inhibition of PGE(2) production in enzymatic and cell-based assays. The synthesis of these molecules and their activities will be discussed.

Collaboration


Dive into the Richard W. Friesen's collaboration.

Researchain Logo
Decentralizing Knowledge