Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W.J. Groen is active.

Publication


Featured researches published by Richard W.J. Groen.


mAbs | 2015

Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma

Marije B. Overdijk; Sandra Verploegen; Marijn Bögels; Marjolein van Egmond; Jeroen J. Lammerts van Bueren; Tuna Mutis; Richard W.J. Groen; Esther Breij; Anton Martens; Wim K. Bleeker; Paul Parren

Daratumumab (DARA) is a human CD38-specific IgG1 antibody that is in clinical development for the treatment of multiple myeloma (MM). The potential for IgG1 antibodies to induce macrophage-mediated phagocytosis, in combination with the known presence of macrophages in the tumor microenvironment in MM and other hematological tumors, led us to investigate the contribution of antibody-dependent, macrophage-mediated phagocytosis to DARAs mechanism of action. Live cell imaging revealed that DARA efficiently induced macrophage-mediated phagocytosis, in which individual macrophages rapidly and sequentially engulfed multiple tumor cells. DARA-dependent phagocytosis by mouse and human macrophages was also observed in an in vitro flow cytometry assay, using a range of MM and Burkitts lymphoma cell lines. Phagocytosis contributed to DARAs anti-tumor activity in vivo, in both a subcutaneous and an intravenous leukemic xenograft mouse model. Finally, DARA was shown to induce macrophage-mediated phagocytosis of MM cells isolated from 11 of 12 MM patients that showed variable levels of CD38 expression. In summary, we demonstrate that phagocytosis is a fast, potent and clinically relevant mechanism of action that may contribute to the therapeutic activity of DARA in multiple myeloma and potentially other hematological tumors.


Journal of Clinical Investigation | 2014

Phenothiazines induce PP2A-mediated apoptosis in T cell acute lymphoblastic leukemia

Alejandro Gutierrez; Li Pan; Richard W.J. Groen; Frederic Baleydier; Alex Kentsis; Jason J. Marineau; Ruta Grebliunaite; Elena Kozakewich; Casie Reed; Françoise Pflumio; Sandrine Poglio; Benjamin Uzan; Paul A. Clemons; Lynn VerPlank; Frank An; Jason Burbank; Stephanie Norton; Nicola Tolliday; Hanno Steen; Andrew P. Weng; H. Yuan; James E. Bradner; Constantine S. Mitsiades; A. Thomas Look

T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer that is frequently associated with activating mutations in NOTCH1 and dysregulation of MYC. Here, we performed 2 complementary screens to identify FDA-approved drugs and drug-like small molecules with activity against T-ALL. We developed a zebrafish system to screen small molecules for toxic activity toward MYC-overexpressing thymocytes and used a human T-ALL cell line to screen for small molecules that synergize with Notch inhibitors. We identified the antipsychotic drug perphenazine in both screens due to its ability to induce apoptosis in fish, mouse, and human T-ALL cells. Using ligand-affinity chromatography coupled with mass spectrometry, we identified protein phosphatase 2A (PP2A) as a perphenazine target. T-ALL cell lines treated with perphenazine exhibited rapid dephosphorylation of multiple PP2A substrates and subsequent apoptosis. Moreover, shRNA knockdown of specific PP2A subunits attenuated perphenazine activity, indicating that PP2A mediates the drugs antileukemic activity. Finally, human T-ALLs treated with perphenazine exhibited suppressed cell growth and dephosphorylation of PP2A targets in vitro and in vivo. Our findings provide a mechanistic explanation for the recurring identification of phenothiazines as a class of drugs with anticancer effects. Furthermore, these data suggest that pharmacologic PP2A activation in T-ALL and other cancers driven by hyperphosphorylated PP2A substrates has therapeutic potential.


Blood | 2012

Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma

Richard W.J. Groen; Willy Noort; Reinier Raymakers; Henk-Jan Prins; Linda Aalders; Frans M.A. Hofhuis; Petra Moerer; J.F. van Velzen; Andries C. Bloem; B. van Kessel; Henk Rozemuller; E. van Binsbergen; Arjan Buijs; H. Yuan; J.D. de Bruijn; M. de Weers; Paul Parren; Jan Jacob Schuringa; H M Lokhorst; Tuna Mutis; Anton Martens

Interactions within the hematopoietic niche in the BM microenvironment are essential for maintenance of the stem cell pool. In addition, this niche is thought to serve as a sanctuary site for malignant progenitors during chemotherapy. Therapy resistance induced by interactions with the BM microenvironment is a major drawback in the treatment of hematologic malignancies and bone-metastasizing solid tumors. To date, studying these interactions was hampered by the lack of adequate in vivo models that simulate the human situation. In the present study, we describe a unique human-mouse hybrid model that allows engraftment and outgrowth of normal and malignant hematopoietic progenitors by implementing a technology for generating a human bone environment. Using luciferase gene marking of patient-derived multiple myeloma cells and bioluminescent imaging, we were able to follow pMM cells outgrowth and to visualize the effect of treatment. Therapeutic interventions in this model resulted in equivalent drug responses as observed in the corresponding patients. This novel human-mouse hybrid model creates unprecedented opportunities to investigate species-specific microenvironmental influences on normal and malignant hematopoietic development, and to develop and personalize cancer treatment strategies.


Leukemia | 2015

Upregulation of CD38 expression on multiple myeloma cells by all- trans retinoic acid improves the efficacy of daratumumab

Inger S. Nijhof; Richard W.J. Groen; H M Lokhorst; B. van Kessel; Andries C. Bloem; J.F. van Velzen; R de Jong-Korlaar; H. Yuan; Willy Noort; Saskia K. Klein; Anton Martens; Parul Doshi; Kate Sasser; T Mutis; N W C J van de Donk

Daratumumab is an anti-CD38 monoclonal antibody with lytic activity against multiple myeloma (MM) cells, including ADCC (antibody-dependent cellular cytotoxicity) and CDC (complement-dependent cytotoxicity). Owing to a marked heterogeneity of response to daratumumab therapy in MM, we investigated determinants of the sensitivity of MM cells toward daratumumab-mediated ADCC and CDC. In bone marrow samples from 144 MM patients, we observed no difference in daratumumab-mediated lysis between newly diagnosed or relapsed/refractory patients. However, we discovered, next to an expected effect of effector (natural killer cells/monocytes) to target (MM cells) ratio on ADCC, a significant association between CD38 expression and daratumumab-mediated ADCC (127 patients), as well as CDC (56 patients). Similarly, experiments with isogenic MM cell lines expressing different levels of CD38 revealed that the level of CD38 expression is an important determinant of daratumumab-mediated ADCC and CDC. Importantly, all-trans retinoic acid (ATRA) increased CD38 expression levels but also reduced expression of the complement-inhibitory proteins CD55 and CD59 in both cell lines and primary MM samples. This resulted in a significant enhancement of the activity of daratumumab in vitro and in a humanized MM mouse model as well. Our results provide the preclinical rationale for further evaluation of daratumumab combined with ATRA in MM patients.


Blood | 2016

CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma

Inger S. Nijhof; Tineke Casneuf; Jeroen F. van Velzen; Berris van Kessel; Amy Axel; Khaja Syed; Richard W.J. Groen; Pieter Sonneveld; Monique C. Minnema; Sonja Zweegman; Christopher Chiu; Andries C. Bloem; Tuna Mutis; Henk M. Lokhorst; A. Kate Sasser; Niels W.C.J. van de Donk

The anti-CD38 monoclonal antibody daratumumab is well tolerated and has high single agent activity in heavily pretreated relapsed and refractory multiple myeloma (MM). However, not all patients respond, and many patients eventually develop progressive disease to daratumumab monotherapy. We therefore examined whether pretreatment expression levels of CD38 and complement-inhibitory proteins (CIPs) are associated with response and whether changes in expression of these proteins contribute to development of resistance. In a cohort of 102 patients treated with daratumumab monotherapy (16 mg/kg), we found that pretreatment levels of CD38 expression on MM cells were significantly higher in patients who achieved at least partial response (PR) compared with patients who achieved less than PR. However, cell surface expression of the CIPs, CD46, CD55, and CD59, was not associated with clinical response. In addition, CD38 expression was reduced in both bone marrow-localized and circulating MM cells, following the first daratumumab infusion. CD38 expression levels on MM cells increased again following daratumumab discontinuation. In contrast, CD55 and CD59 levels were significantly increased on MM cells only at the time of progression. All-trans retinoic acid increased CD38 levels and decreased CD55 and CD59 expression on MM cells from patients who developed daratumumab resistance, to approximately pretreatment values. This resulted in significant enhancement of daratumumab-mediated complement-dependent cytotoxicity. Together, these data demonstrate an important role for CD38 and CIP expression levels in daratumumab sensitivity and suggest that therapeutic combinations that alter CD38 and CIP expression levels should be investigated in the treatment of MM. These trials were registered at www.clinicaltrials.gov as #NCT00574288 (GEN501) and #NCT01985126 (SIRIUS).


Clinical Cancer Research | 2015

Preclinical evidence for the therapeutic potential of CD38-targeted immuno-chemotherapy in multiple myeloma patients refractory to lenalidomide and bortezomib

Inger S. Nijhof; Richard W.J. Groen; Willy A. Noort; Berris van Kessel; Regina A. de Jong-Korlaar; Joost M. Bakker; Jeroen J. Lammerts-van Bueren; Paul Parren; Henk M. Lokhorst; Niels W.C.J. van de Donk; Anton Martens; Tuna Mutis

Purpose: Novel therapeutic agents have significantly improved the survival of patients with multiple myeloma. Nonetheless, the prognosis of patients with multiple myeloma who become refractory to the novel agents lenalidomide and bortezomib is very poor, indicating the urgent need for new therapeutic options for these patients. The human CD38 monoclonal antibody daratumumab is being evaluated as a novel therapy for multiple myeloma. Prompted with the encouraging results of ongoing clinical phase I/II trials, we now addressed the potential value of daratumumab alone or in combination with lenalidomide or bortezomib for the treatment of lenalidomide- and bortezomib-refractory patients. Experimental Design: In ex vivo assays, mainly evaluating antibody-dependent cell-mediated cytotoxicity, and in an in vivo xenograft mouse model, we evaluated daratumumab alone or in combination with lenalidomide or bortezomib as a potential therapy for lenalidomide- and bortezomib-refractory multiple myeloma patients. Results: Daratumumab induced significant lysis of lenalidomide/bortezomib-resistant multiple myeloma cell lines and of primary multiple myeloma cells in the bone marrow mononuclear cells derived from lenalidomide- and/or bortezomib-refractory patients. In these assays, lenalidomide but not bortezomib, synergistically enhanced daratumumab-mediated multiple myeloma lysis through activation of natural killer cells. Finally, in an in vivo xenograft model, only the combination of daratumumab with lenalidomide effectively reduced the tumorigenic growth of primary multiple myeloma cells from a lenalidomide- and bortezomib-refractory patient. Conclusions: Our results provide the first preclinical evidence for the benefit of daratumumab plus lenalidomide combination for lenalidomide- and bortezomib-refractory patients. Clin Cancer Res; 21(12); 2802–10. ©2014 AACR. See related commentary by Laubach and Richardson, p. 2660


Journal of Immunology | 2016

The Therapeutic CD38 Monoclonal Antibody Daratumumab Induces Programmed Cell Death via Fcγ Receptor–Mediated Cross-Linking

Marije B. Overdijk; J.H. Marco Jansen; Maaike Nederend; Jeroen J. Lammerts van Bueren; Richard W.J. Groen; Paul Parren; Jeanette H. W. Leusen; Péter Boross

Emerging evidence suggests that FcγR-mediated cross-linking of tumor-bound mAbs may induce signaling in tumor cells that contributes to their therapeutic activity. In this study, we show that daratumumab (DARA), a therapeutic human CD38 mAb with a broad-spectrum killing activity, is able to induce programmed cell death (PCD) of CD38+ multiple myeloma tumor cell lines when cross-linked in vitro by secondary Abs or via an FcγR. By comparing DARA efficacy in a syngeneic in vivo tumor model using FcRγ-chain knockout or NOTAM mice carrying a signaling-inactive FcRγ-chain, we found that the inhibitory FcγRIIb as well as activating FcγRs induce DARA cross-linking–mediated PCD. In conclusion, our in vitro and in vivo data show that FcγR-mediated cross-linking of DARA induces PCD of CD38-expressing multiple myeloma tumor cells, which potentially contributes to the depth of response observed in DARA-treated patients and the drug’s multifaceted mechanisms of action.


Blood | 2011

Disruption of heparan sulfate proteoglycan conformation perturbs B cell maturation and APRIL-mediated plasma cell survival

Rogier M. Reijmers; Richard W.J. Groen; Annemieke Kuil; Kees Weijer; Fiona Clare Kimberley; Jan Paul Medema; Toin H. van Kuppevelt; Jin-Ping Li; Marcel Spaargaren; Steven T. Pals

The development and antigen-dependent differentiation of B lymphocytes are orchestrated by an array of growth factors, cytokines, and chemokines that require tight spatiotemporal regulation. Heparan sulfate proteoglycans specifically bind and regulate the bioavailability of soluble protein ligands, but their role in the immune system has remained largely unexplored. Modification of heparan sulfate by glucuronyl C5-epimerase (Glce) controls heparan sulfate-chain flexibility and thereby affects ligand binding. Here we show that Glce deficiency impairs B-cell maturation, resulting in decreased plasma cell numbers and immunoglobulin levels. We demonstrate that C5-epimerase modification of heparan sulfate is critical for binding of a proliferation inducing ligand (APRIL) and that Glce-deficient plasma cells fail to respond to APRIL-mediated survival signals. Our results identify heparan sulfate proteoglycans as novel players in B-cell maturation and differentiation and suggest that heparan sulfate conformation is crucial for recruitment of factors that control plasma cell survival.


Blood | 2010

Targeting EXT1 reveals a crucial role for heparan sulfate in the growth of multiple myeloma

Rogier M. Reijmers; Richard W.J. Groen; Henk Rozemuller; Annemieke Kuil; Anneke de Haan-Kramer; Tamás Csikós; Anton Martens; Marcel Spaargaren; Steven T. Pals

Expression of the heparan sulfate proteoglycan syndecan-1 is a hallmark of both normal and multiple myeloma (MM) plasma cells. Syndecan-1 could affect plasma cell fate by strengthening integrin-mediated adhesion via its core protein and/or by accommodating and presenting soluble factors via its HS side chains. Here, we show that inducible RNAi-mediated knockdown of syndecan-1 in human MM cells leads to reduced growth rates and a strong increase of apoptosis. Importantly, knockdown of EXT1, a copolymerase critical for HS chain biosynthesis, had similar effects. Using an innovative myeloma xenotransplantation model in Rag-2(-/-)gamma(c)(-/-) mice, we demonstrate that induction of EXT1 knockdown in vivo dramatically suppresses the growth of bone marrow localized myeloma. Our findings provide direct evidence that the HS chains of syndecan-1 are crucial for the growth and survival of MM cells within the bone marrow environment, and indicate the HS biosynthesis machinery as a potential treatment target in MM.


Haematologica | 2008

A bioluminescence imaging based in vivo model for preclinical testing of novel cellular immunotherapy strategies to improve the graft-versus-myeloma effect

Henk Rozemuller; Ellen van der Spek; Lijnie Bogers-Boer; Mieke Zwart; Vivienne Verweij; Maarten Emmelot; Richard W.J. Groen; Robbert M. Spaapen; Andries C. Bloem; Henk M. Lokhorst; Tuna Mutis; Anton Martens

The development and preclinical testing of novel immunotherapy strategies for multiple myeloma can benefit substantially from a humanized animal model that enables quantitative real-time monitoring of tumor progression. This study describes a non-invasive bioluminescent imaging system for real-time monitoring of multiple myeloma cell growth in mice. Background The development and preclinical testing of novel immunotherapy strategies for multiple myeloma can benefit substantially from a humanized animal model that enables quantitative real-time monitoring of tumor progression. Here we have explored the feasibility of establishing such a model in immunodeficient RAG2−/−γc−/− mice, by utilizing non-invasive bioluminescent imaging for real-time monitoring of multiple myeloma cell growth. Design and Methods Seven multiple myeloma cell lines, marked with a green fluorescent protein firefly luciferase fusion gene, were intravenously injected into RAG2−/−γc−/− mice. Tumor localization and outgrowth was monitored by bioluminescent imaging. The sensitivity of this imaging technique was compared to that of free immumoglobulin light chain -based myeloma monitoring. Established tumors were treated with radiotherapy or with allogeneic peripheral blood mononuclear cell infusions to evaluate the application areas of the model. Results Five out of seven tested multiple myeloma cell lines progressed as myeloma-like tumors predominantly in the bone marrow; the two other lines showed additional growth in soft tissues. In our model bioluminescent imaging appeared superior to free light chain-based monitoring and also allowed semi-quantitative monitoring of individual foci of multiple myeloma. Tumors treated with radiotherapy showed temporary regression. However, infusion of allogeneic peripheral blood mononuclear cells resulted in the development of xenogeneic graft-versus-host-disease and a powerful cell dose-dependent graft-versus-myeloma effect, resulting in complete eradication of tumors, depending on the in vitro immunogenicity of the inoculated multiple myeloma cells. Conclusions Our results indicate that this new model allows convenient and sensitive real-time monitoring of cellular approaches for immunotherapy of multiple myeloma-like tumors with different immunogenicities. This model, therefore, allows comprehensive preclinical evaluation of novel combination therapies for multiple myeloma.

Collaboration


Dive into the Richard W.J. Groen's collaboration.

Top Co-Authors

Avatar

Anton Martens

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tuna Mutis

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joost D. de Bruijn

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge