Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Mitchell is active.

Publication


Featured researches published by Richard W. Mitchell.


European Respiratory Journal | 2007

Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma

Steven S. An; Tony R. Bai; Jason H. T. Bates; Judith L. Black; Robert H. Brown; Vito Brusasco; Pasquale Chitano; Linhong Deng; Maria L. Dowell; David H. Eidelman; Ben Fabry; Nigel J. Fairbank; Lincoln E. Ford; Jeffrey J. Fredberg; William T. Gerthoffer; Susan H. Gilbert; Reinoud Gosens; Susan J. Gunst; Andrew J. Halayko; R. H. Ingram; Charles G. Irvin; Alan James; Luke J. Janssen; Gregory G. King; Darryl A. Knight; Anne-Marie Lauzon; Oren Lakser; Mara S. Ludwig; Kenneth R. Lutchen; Geoff Maksym

Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not “cure” asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1999

Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes

Andrew J. Halayko; Blanca Camoretti-Mercado; Sean M. Forsythe; Joaquim E. Vieira; Richard W. Mitchell; Mark E. Wylam; Marc B. Hershenson; Julian Solway

We tested the hypothesis that prolonged serum deprivation would allow a subset of cultured airway myocytes to reacquire the abundant contractile protein content, marked shortening capacity, and elongated morphology characteristic of contractile cells within intact tissue. Passage 1 or 2 canine tracheal smooth muscle (SM) cells were grown to confluence, then serum deprived for up to 19 days. During serum deprivation, two differentiation pathways emerged. One-sixth of the cells developed an elongated morphology and aligned into bundles. Elongated myocytes contained cables of contractile myofilaments, dense bodies, gap junctions, and membrane caveoli, ultrastructural features of contractile SM in tissue. These cells immunostained intensely for SM alpha-actin, SM myosin heavy chain (MHC), and SM22 (an SM-specific actin-binding protein), and Western analysis of culture lysates disclosed 1.8 (SM alpha-actin)-, 7.7 (SM MHC)-, and 5.8 (SM22)-fold protein increases during serum deprivation. Immunoreactive M3 muscarinic receptors were present in dense foci distributed throughout elongated, SM MHC-positive myocytes. ACh (10(-3) M) induced a marked shortening (59.7 +/- 14.4% of original length) in 62% of elongated myocytes made semiadherent by gentle proteolytic digestion, and membrane bleb formation (a consequence of contraction) occurred in all stimulated cells that remained adherent and so did not shorten. Cultured airway myocytes that did not elongate during serum deprivation instead became short and flattened, lost immunoreactivity for contractile proteins, lacked the M3 muscarinic-receptor expression pattern seen in elongated cells, and exhibited no contractile response to ACh. Thus we demonstrate that prolonged serum deprivation induces distinct differentiation pathways in confluent cultured tracheal myocytes and that one subpopulation acquires an unequivocally functional contractile phenotype in which structure and function resemble contractile myocytes from intact tissue.


Clinical Reviews in Allergy & Immunology | 2003

What evidence implicates airway smooth muscle in the cause of BHR

Nickolai O. Dulin; Darren J. Fernandes; Maria L. Dowell; Shashi Bellam; John F. McConville; Oren Lakser; Richard W. Mitchell; Blanca Camoretti-Mercado; Paul Kogut; Julian Solway

Bronchial hyperresponsiveness (BHR), the occurrence of excessive bronchoconstriction in response to relatively small constrictor stimuli, is a cardinal feature of asthma. Here, we consider the role that airway smooth muscle might play in the generation of BHR. The weight of evidence suggests that smooth muscle isolated from asthmatic tissues exhibits normal sensitivity to constrictor agonists when studied during isometric contraction, but the increased muscle mass within asthmatic airways might generate more total force than the lesser amount of muscle found in normal bronchi. Another salient difference between asthmatic and normal individuals lies in the effect of deep inhalation (DI) on bronchoconstriction. DI often substantially reverses induced bronchoconstriction in normals, while it often has much less effect on spontaneous or induced bronchoconstriction in asthmatics. It has been proposed that abnormal dynamic aspects of airway smooth muscle contraction—velocity of contraction or plasticity-elasticity balance—might underlie the abnormal DI response in asthma. We suggest a speculative model in which abnormally long actin filaments might account for abnormally increased elasticity of contracted airway smooth muscle.


Proceedings of the American Thoracic Society | 2009

Disrupting actin-myosin-actin connectivity in airway smooth muscle as a treatment for asthma?

Tera L. Lavoie; Maria L. Dowell; Oren Lakser; William T. Gerthoffer; Jeffrey J. Fredberg; Chun Y. Seow; Richard W. Mitchell; Julian Solway

Breathing is known to functionally antagonize bronchoconstriction caused by airway muscle contraction. During breathing, tidal lung inflation generates force fluctuations that are transmitted to the contracted airway muscle. In vitro, experimental application of force fluctuations to contracted airway smooth muscle strips causes them to relengthen. Such force fluctuation-induced relengthening (FFIR) likely represents the mechanism by which breathing antagonizes bronchoconstriction. Thus, understanding the mechanisms that regulate FFIR of contracted airway muscle could suggest novel therapeutic interventions to increase FFIR, and so to enhance the beneficial effects of breathing in suppressing bronchoconstriction. Here we propose that the connectivity between actin filaments in contracting airway myocytes is a key determinant of FFIR, and suggest that disrupting actin-myosin-actin connectivity by interfering with actin polymerization or with myosin polymerization merits further evaluation as a potential novel approach for preventing prolonged bronchoconstriction in asthma.


European Respiratory Journal | 2008

Steroids Augment Relengthening of Contracted Airway Smooth Muscle: Potential Additional Mechanism of Benefit in Asthma

Oren Lakser; Maria L. Dowell; F. L. Hoyte; Bohao Chen; Tera L. Lavoie; C. Ferreira; Lawrence H. Pinto; Nickolai O. Dulin; Paul Kogut; Jason Churchill; Richard W. Mitchell; Julian Solway

Breathing (especially deep breathing) antagonises development and persistence of airflow obstruction during bronchoconstrictor stimulation. Force fluctuations imposed on contracted airway smooth muscle (ASM) in vitro result in its relengthening, a phenomenon called force fluctuation-induced relengthening (FFIR). Because breathing imposes similar force fluctuations on contracted ASM within intact lungs, FFIR represents a likely mechanism by which breathing antagonises bronchoconstriction. While this bronchoprotective effect appears to be impaired in asthma, corticosteroid treatment can restore the ability of deep breaths to reverse artificially induced bronchoconstriction in asthmatic subjects. It has previously been demonstrated that FFIR is physiologically regulated through the p38 mitogen-activated protein kinase (MAPK) signalling pathway. While the beneficial effects of corticosteroids have been attributed to suppression of airway inflammation, the current authors hypothesised that alternatively they might exert their action directly on ASM by augmenting FFIR as a result of inhibiting p38 MAPK signalling. This possibility was tested in the present study by measuring relengthening in contracted canine tracheal smooth muscle (TSM) strips. The results indicate that dexamethasone treatment significantly augmented FFIR of contracted canine TSM. Canine tracheal ASM cells treated with dexamethasone demonstrated increased MAPK phosphatase-1 expression and decreased p38 MAPK activity, as reflected in reduced phosphorylation of the p38 MAPK downstream target, heat shock protein 27. These results suggest that corticosteroids may exert part of their therapeutic effect through direct action on airway smooth muscle, by decreasing p38 mitogen-activated protein kinase activity and thus increasing force fluctuation-induced relengthening.


European Respiratory Journal | 2010

MEK modulates force-fluctuation-induced relengthening of canine tracheal smooth muscle

Maria L. Dowell; Tera L. Lavoie; Oren Lakser; Nickolai O. Dulin; Jeffrey J. Fredberg; William T. Gerthoffer; C. Y. Seow; Richard W. Mitchell; Julian Solway

Tidal breathing, and especially deep breathing, is known to antagonise bronchoconstriction caused by airway smooth muscle (ASM) contraction; however, this bronchoprotective effect of breathing is impaired in asthma. Force fluctuations applied to contracted ASM in vitro cause it to relengthen, force-fluctuation-induced relengthening (FFIR). Given that breathing generates similar force fluctuations in ASM, FFIR represents a likely mechanism by which breathing antagonises bronchoconstriction. Thus it is of considerable interest to understand what modulates FFIR, and how ASM might be manipulated to exploit this phenomenon. It was demonstrated previously that p38 mitogen-activated protein kinase (MAPK) signalling regulates FFIR in ASM strips. Here, it was hypothesised that the MAPK kinase (MEK) signalling pathway also modulates FFIR. In order to test this hypothesis, changes in FFIR were measured in ASM treated with the MEK inhibitor, U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene). Increasing concentrations of U0126 caused greater FFIR. U0126 reduced extracellular signal-regulated kinase 1/2 phosphorylation without affecting isotonic shortening or 20-kDa myosin light chain and p38 MAPK phosphorylation. However, increasing concentrations of U0126 progressively blunted phosphorylation of high-molecular-weight caldesmon (h-caldesmon), a downstream target of MEK. Thus changes in FFIR exhibited significant negative correlation with h-caldesmon phosphorylation. The present data demonstrate that FFIR is regulated through MEK signalling, and suggest that the role of MEK is mediated, in part, through caldesmon.


British Journal of Pharmacology | 1998

Differential effects of cyclosporine A after acute antigen challenge in sensitized cats in vivo and ex vivo

Richard W. Mitchell; Phillip J. Cozzi; I. Maurice Ndukwu; Stephen M. Spaethe; Alan R. Leff; Philip Padrid

1 We determined the effect of cyclosporine A (CsA) treatment on mast cell degranulation and lung resistance (RL) in vivo, and tracheal smooth muscle (TSM) contraction ex vivo after antigen challenge in sensitized cats. We also determined the direct effects of addition of CsA to the tissue bath on antigen‐induced responses of TSM in vitro. 2 Cats (n=10) were sensitized by i.m. injection of Ascaris suum antigen (AA); 5 cats (CsA+) received CsA twice daily for 2 weeks before acute antigen challenge in doses sufficient to suppress interleukin‐2 secretion from feline peripheral blood mononuclear cells ex vivo. 3 Lung resistance increased comparably within 10 min of exposure to AA (P<0.03). Histamine content in bronchoalveolar lavage fluid from both groups increased comparably within 30 min of antigen challenge, from undetectable levels to 542±74 pg ml−1 post AA for CsA+ and from 74±19 pg ml−1 at baseline, to 970±180 pg ml−1 post AA CsA− (P<0.05; P=NS vs CsA+). 4 In excised TSM, active tension elicited by exposure to AA in vitro was 107±38% KCl in the CsA+ group vs 144±56% KCl in the CsA− group (P=NS). However, contraction of TSM (n=4) harvested from both groups was abolished or greatly diminished after AA challenge when tissues were pre‐incubated with 1 μM CsA in vitro (8±8% KCl, P<0.05 vs CsA+ and CsA−). This was associated with inhibited release of 5‐hydroxytryptamine into the organ bath fluid of tissues treated with CsA in vitro only. 5 We demonstrated that CsA treatment in vivo does not inhibit the early phase asthmatic response or mast cell degranulation following antigen challenge in sensitized cats. Additionally, the effects of CsA on mast cell function ex vivo do not reflect lack of effects of CsA on mast cell function in vivo in this animal model of atopic asthma.


American Journal of Physiology-lung Cellular and Molecular Physiology | 1998

Eosinophils, major basic protein, and polycationic peptides augment bovine airway myocyte Ca2+mobilization

Mark E. Wylam; Nesli Gungor; Richard W. Mitchell; Jason G. Umans

Previous studies in vivo or in isolated airway preparations have suggested that eosinophil-derived polycationic proteins enhance airway smooth muscle tone in an epithelium-dependent manner. We assessed the direct effects of activated human eosinophil supernatant, major basic protein (MBP), and polycationic polypeptides on basal and agonist-stimulated intracellular Ca2+ concentrations ([Ca2+]i) in cultured bovine tracheal smooth muscle (TSM) cells. A 1-h incubation of myocytes with activated eosinophil buffer resulted in a doubling of basal [Ca2+]i and increased responsivity to histamine compared with myocytes that were exposed to sham-activated eosinophil buffer. In addition, concentration-dependent acute transient increases and subsequent 1-h sustained elevations of basal [Ca2+]i were observed immediately after addition of MBP and model polycationic proteins. Finally, both peak and plateau [Ca2+]i responses to bradykinin addition were augmented significantly in cultured myocytes that had been exposed to low concentrations of MBP or model polycationic proteins but were inhibited at greater concentrations. This elevated [Ca2+]i to polycationic proteins was manifest in epithelium-denuded bovine TSM strips as concentration-dependent increased basal tone. We conclude that activated eosinophil supernatant, MBP, and other polycationic proteins have a direct effect on both basal and subsequent agonist-elicited Ca2+ mobilization in cultured TSM cells; TSM strips in vitro demonstrated, respectively, augmented and diminished responses to the contractile agonist acetylcholine. It is possible that alteration in myocyte Ca2+ mobilization induced by these substances may influence clinical states of altered airway tone, such as asthma.


Mammalian Genome | 2008

Gene-environment interactions in a mutant mouse kindred with native airway constrictor hyperresponsiveness

Lawrence H. Pinto; Emily Eaton; Bohao Chen; Jonah Fleisher; Dmitry Shuster; Joel McCauley; Dalius Kedainis; Sandra M. Siepka; Kazuhiro Shimomura; Eun Joo Song; Aliya N. Husain; Oren Lakser; Richard W. Mitchell; Maria L. Dowell; Melanie Brown; Blanca Camoretti-Mercado; Robert M. Naclerio; Anne I. Sperling; Stephen I. Levin; Fred W. Turek; Julian Solway

We mutagenized male BTBR mice with N-ethyl-N-nitrosourea and screened 1315 of their G3 offspring for airway hyperresponsiveness. A phenovariant G3 mouse with exaggerated methacholine bronchoconstrictor response was identified and his progeny bred in a nonspecific-pathogen-free (SPF) facility where sentinels tested positive for minute virus of mice and mouse parvovirus and where softwood bedding was used. The mutant phenotype was inherited through G11 as a single autosomal semidominant mutation with marked gender restriction, with males exhibiting almost full penetrance and very few females phenotypically abnormal. Between G11 and G12, facility infection eradication was undertaken and bedding was changed to hardwood. We could no longer detect airway hyperresponsiveness in more than 37 G12 offspring of 26 hyperresponsive G11 males. Also, we could not identify the mutant phenotype among offspring of hyperresponsive G8–G10 sires rederived into an SPF facility despite 21 attempts. These two observations suggest that both genetic and environmental factors were needed for phenotype expression. We suspect that rederivation into an SPF facility or altered exposure to pathogens or other unidentified substances modified environmental interactions with the mutant allele, and so resulted in disappearance of the hyperresponsive phenotype. Our experience suggests that future searches for genes that confer susceptibility for airway hyperresponsiveness might not be able to identify some genes that confer susceptibility if the searches are performed in SPF facilities. Experimenters are advised to arrange for multigeneration constancy of mouse care in order to clone mutant genes. Indeed, we were not able to map the mutation before losing the phenotype.


American Journal of Respiratory Cell and Molecular Biology | 2003

The RhoA/Rho Kinase Pathway Regulates Nuclear Localization of Serum Response Factor

Hong Wei Liu; Andrew J. Halayko; Darren J. Fernandes; Gregory S. Harmon; Joel McCauley; Pawel Kocieniewski; John F. McConville; Yiping Fu; Sean M. Forsythe; Paul Kogut; Shashi Bellam; Maria L. Dowell; Jason Churchill; Heinte Lesso; Kamrouz Kassiri; Richard W. Mitchell; Marc B. Hershenson; Blanca Camoretti-Mercado; Julian Solway

Collaboration


Dive into the Richard W. Mitchell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge