Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Reynolds is active.

Publication


Featured researches published by Richard W. Reynolds.


Bulletin of the American Meteorological Society | 1996

The NCEP/NCAR 40-Year Reanalysis Project

Eugenia Kalnay; Masao Kanamitsu; Robert Kistler; William D. Collins; Dennis G. Deaven; Lev S. Gandin; Mark Iredell; Suranjana Saha; Glenn Hazen White; John S. Woollen; Yunshan Zhu; Muthuvel Chelliah; Wesley Ebisuzaki; Wayne Higgins; John E. Janowiak; Kingtse C. Mo; Chester F. Ropelewski; Julian X. L. Wang; Ants Leetmaa; Richard W. Reynolds; Roy L. Jenne; Dennis Joseph

The NCEP and NCAR are cooperating in a project (denoted “reanalysis”) to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957–96. This eliminates perceived climate jumps associated with changes in the data assimilation system. The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided by differe...


Journal of Climate | 2002

An Improved In Situ and Satellite SST Analysis for Climate

Richard W. Reynolds; Nick Rayner; Thomas M. Smith; Diane C. Stokes; Wanqiu Wang

Abstract A weekly 1° spatial resolution optimum interpolation (OI) sea surface temperature (SST) analysis has been produced at the National Oceanic and Atmospheric Administration (NOAA) using both in situ and satellite data from November 1981 to the present. The weekly product has been available since 1993 and is widely used for weather and climate monitoring and forecasting. Errors in the satellite bias correction and the sea ice to SST conversion algorithm are discussed, and then an improved version of the OI analysis is developed. The changes result in a modest reduction in the satellite bias that leaves small global residual biases of roughly −0.03°C. The major improvement in the analysis occurs at high latitudes due to the new sea ice algorithm where local differences between the old and new analysis can exceed 1°C. Comparisons with other SST products are needed to determine the consistency of the OI. These comparisons show that the differences among products occur on large time- and space scales wit...


Journal of Climate | 1994

Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation

Richard W. Reynolds; Thomas M. Smith

Abstract The new NOAA operational global sea surface temperature (SST) analysis is described. The analyses use 7 days of in situ (ship and buoy) and satellite SST. These analyses are produced weekly and daily using optimum interpolation (OI) on a 1° grid. The OI technique requires the specification of data and analysis error statistics. These statistics are derived and show that the SST rms data errors from ships are almost twice as large as the data errors from buoys or satellites. In addition, the average e-folding spatial error scales have been found to be 850 km in the zonal direction and 615 km in the meridional direction. The analysis also includes a preliminary step that corrects any satellite biases relative to the in situ data using Poissons equation. The importance of this correction is demonstrated using recent data following the 1991 eruptions of Mt. Pinatubo. The OI analysis has been computed using the in situ and bias-corrected satellite data for the period 1985 to present.


Journal of Climate | 2008

Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006)

Thomas M. Smith; Richard W. Reynolds; Thomas C. Peterson; Jay H. Lawrimore

Abstract Observations of sea surface and land–near-surface merged temperature anomalies are used to monitor climate variations and to evaluate climate simulations; therefore, it is important to make analyses of these data as accurate as possible. Analysis uncertainty occurs because of data errors and incomplete sampling over the historical period. This manuscript documents recent improvements in NOAA’s merged global surface temperature anomaly analysis, monthly, in spatial 5° grid boxes. These improvements allow better analysis of temperatures throughout the record, with the greatest improvements in the late nineteenth century and since 1985. Improvements in the late nineteenth century are due to improved tuning of the analysis methods. Beginning in 1985, improvements are due to the inclusion of bias-adjusted satellite data. The old analysis (version 2) was documented in 2005, and this improved analysis is called version 3.


Journal of Climate | 2007

Daily High-Resolution-Blended Analyses for Sea Surface Temperature

Richard W. Reynolds; Thomas M. Smith; Chunying Liu; Dudley B. Chelton; Kenneth Scott Casey; Michael G. Schlax

Two new high-resolution sea surface temperature (SST) analysis products have been developed using optimum interpolation (OI). The analyses have a spatial grid resolution of 0.25° and a temporal resolution of 1 day. One product uses the Advanced Very High Resolution Radiometer (AVHRR) infrared satellite SST data. The other uses AVHRR and Advanced Microwave Scanning Radiometer (AMSR) on the NASA Earth Observing System satellite SST data. Both products also use in situ data from ships and buoys and include a large-scale adjustment of satellite biases with respect to the in situ data. Because of AMSR’s near-all-weather coverage, there is an increase in OI signal variance when AMSR is added to AVHRR. Thus, two products are needed to avoid an analysis variance jump when AMSR became available in June 2002. For both products, the results show improved spatial and temporal resolution compared to previous weekly 1° OI analyses. The AVHRR-only product uses Pathfinder AVHRR data (currently available from January 1985 to December 2005) and operational AVHRR data for 2006 onward. Pathfinder AVHRR was chosen over operational AVHRR, when available, because Pathfinder agrees better with the in situ data. The AMSR– AVHRR product begins with the start of AMSR data in June 2002. In this product, the primary AVHRR contribution is in regions near land where AMSR is not available. However, in cloud-free regions, use of both infrared and microwave instruments can reduce systematic biases because their error characteristics are independent.


Journal of Climate | 2004

Improved Extended Reconstruction of SST (1854–1997)

Thomas M. Smith; Richard W. Reynolds

Abstract An improved SST reconstruction for the 1854–1997 period is developed. Compared to the version 1 analysis, in the western tropical Pacific, the tropical Atlantic, and Indian Oceans, more variance is resolved in the new analysis. This improved analysis also uses sea ice concentrations to improve the high-latitude SST analysis and a modified historical bias correction for the 1939–41 period. In addition, the new analysis includes an improved error estimate. Analysis uncertainty is largest in the nineteenth century and during the two world wars due to sparse sampling. The near-global average SST in the new analysis is consistent with the version 1 reconstruction. The 95% confidence uncertainty for the near-global average is 0.4°C or more in the nineteenth century, near 0.2°C for the first half of the twentieth century, and 0.1°C or less after 1950.


Journal of Geophysical Research | 1998

The Tropical Ocean‐Global Atmosphere observing system: A decade of progress

Michael J. McPhaden; Antonio J. Busalacchi; Robert E. Cheney; Jean-René Donguy; Kenneth S. Gage; David Halpern; Ming Ji; Paul R. Julian; Gary Meyers; Gary T. Mitchum; Pearn P. Niiler; Joël Picaut; Richard W. Reynolds; Neville R. Smith; Kensuke Takeuchi

A major accomplishment of the recently completed Tropical Ocean-Global Atmosphere (TOGA) Program was the development of an ocean observing system to support seasonal-to-interannual climate studies. This paper reviews the scientific motivations for the development of that observing system, the technological advances that made it possible, and the scientific advances that resulted from the availability of a significantly expanded observational database. A primary phenomenological focus of TOGA was interannual variability of the coupled ocean-atmosphere system associated with El Nino and the Southern Oscillation (ENSO).Prior to the start of TOGA, our understanding of the physical processes responsible for the ENSO cycle was limited, our ability to monitor variability in the tropical oceans was primitive, and the capability to predict ENSO was nonexistent. TOGA therefore initiated and/or supported efforts to provide real-time measurements of the following key oceanographic variables: surface winds, sea surface temperature, subsurface temperature, sea level and ocean velocity. Specific in situ observational programs developed to provide these data sets included the Tropical Atmosphere-Ocean (TAO) array of moored buoys in the Pacific, a surface drifting buoy program, an island and coastal tide gauge network, and a volunteer observing ship network of expendable bathythermograph measurements. Complementing these in situ efforts were satellite missions which provided near-global coverage of surface winds, sea surface temperature, and sea level. These new TOGA data sets led to fundamental progress in our understanding of the physical processes responsible for ENSO and to the development of coupled ocean-atmosphere models for ENSO prediction.


Journal of Climate | 1988

A Real-Time Global Sea Surface Temperature Analysis

Richard W. Reynolds

Abstract A global monthly sea surface temperature analysis is described which uses real-lime in situ (ship and buoy) and satellite data. The method combines the advantages of both types of data: the ground truth of in situ data and the improved coverage of satellite data. The technique also effectively eliminates most of the bias differences between the in situ and satellite data. Examples of the method are shown to illustrate these points. Sea surface temperature (SST) data from quality-controlled drifting buoys are used to develop error statistics for a 24-month period from January 1985 through December 1986. The average rms monthly error is 0.78°C; the modulus of the monthly blasts (i.e., the average of the absolute value of the monthly biases) is 0.09°C.


Journal of Climate | 1996

Reconstruction of Historical Sea Surface Temperatures Using Empirical Orthogonal Functions

Thomas M. Smith; Richard W. Reynolds; Robert E. Livezey; Diane C. Stokes

Abstract Studies of climate variability often rely on high quality sea surface temperature (SST) anomalies. Although the high-resolution National Centers for Environmental Prediction (formerly the National Meteorological Center) optimum interpolation (OI) SST analysis is satisfactory for these studies, the OI resolution cannot be maintained before November 1931 due to the lack of satellite data. Longer periods of SSTs have come from traditional analyses of in situ (ship and buoy) SST observations alone. A new interpolation method is developed using spatial patterns from empirical orthogonal functions (E0Fs)—that is, a principal component analysis—to improve analyses of SST anomalies from 1950 to 1981. The method uses the more accurate OI analyses from 1982 to 1993 to produce the spatial EOFs. The dominant EOF modes (which correspond to the largest variance) are used as basis functions and are fit, in a least squares sense, to the in situ data to determine the time dependence of each mode. A complete field...


Journal of Climate | 2003

Extended Reconstruction of Global Sea Surface Temperatures Based on COADS Data (1854–1997)

Thomas M. Smith; Richard W. Reynolds

A monthly extended reconstruction of global SST (ERSST) is produced based on Comprehensive Ocean‐ Atmosphere Data Set (COADS) release 2 observations from the 1854‐1997 period. Improvements come from the use of updated COADS observations with new quality control procedures and from improved reconstruction methods. In addition error estimates are computed, which include uncertainty from both sampling and analysis errors. Using this method, little global variance can be reconstructed before the 1880s because data are too sparse to resolve enough modes for that period. Error estimates indicate that except in the North Atlantic ERSST is of limited value before 1880, when the uncertainty of the near-global average is almost as large as the signal. In most regions, the uncertainty decreases through most of the period and is smallest after 1950. The large-scale variations of ERSST are broadly consistent with those associated with the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST) reconstruction produced by the Met Office. There are differences due to both the use of different historical bias corrections as well as different data and analysis procedures, but these differences do not change the overall character of the SST variations. Procedures used here produce a smoother analysis compared to HadISST. The smoother ERSST has the advantage of filtering out more noise at the possible cost of filtering out some real variations when sampling is sparse. A rotated EOF analysis of the ERSST anomalies shows that the dominant modes of variation include ENSO and modes associated with trends. Projection of the HadISST data onto the rotated eigenvectors produces time series similar to those for ERSST, indicating that the dominant modes of variation are consistent in both.

Collaboration


Dive into the Richard W. Reynolds's collaboration.

Top Co-Authors

Avatar

Thomas M. Smith

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott D. Woodruff

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Steven J. Worley

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edward M. Armstrong

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ming Ji

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Viva F. Banzon

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge