Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Ward is active.

Publication


Featured researches published by Richard W. Ward.


Advances in Agronomy | 2008

Will stem rust destroy the world's wheat crop?

Ravi P. Singh; David Hodson; Julio Huerta-Espino; Y. Jin; Peter Njau; R. Wanyera; S. A. Herrera-Foessel; Richard W. Ward

Race Ug99, or TTKSK, of fungus Puccinia graminis tritici , causing stem or black rust disease on wheat ( Triticum aestivum ), first identified in Uganda in 1998 has been recognized as a major threat to wheat production. Its spread in 2006 to Yemen and Sudan and further spread towards North Africa, Middle East and West-South Asia is predicted -aided by predominant wind currents and large areas of wheat varieties that are susceptible and grown under environments favorable for survival and multiplication of the pathogen. This has raised serious concerns of major epidemics that could destroy the wheat crop in these primary risk areas. Detection in Kenya of a new variant TTKST in 2006 with virulence to gene Sr24 , which caused severe epidemics in 2007 in some regions of Kenya and rendered about half of the previously known Ug99-resistant global wheat materials susceptible, has further increased the vulnerability globally. Rigorous screening since 2005 in Kenya and Ethiopia of wheat materials from 22 countries and International Centers has identified low frequency of resistant materials that have potential to replace susceptible cultivars. Diverse sources of resistance, both race-specific and adult-plant type, are now available in high-yielding wheat backgrounds and are being used in breeding. The proposed strategy is to deploy spring wheat varieties possessing durable, adult plant resistance in East Africa and other primary risk areas to reduce inoculum and selection of new virulences capable of overcoming undefeated race-specific resistance genes. Race-specific resistance genes can then be deployed in secondary risk areas preferably in combinations. We believe that Ug99 threat in most countries can be reduced to low levels by urgently identifying, releasing and providing seed of new high yielding, resistant varieties.


Plant Disease | 2008

Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici

Y. Jin; Les J. Szabo; Z. A. Pretorius; Ravi P. Singh; Richard W. Ward; Thomas G. Fetch

The stem rust resistance gene Sr24 is effective against most races of Puccinia graminis f. sp. tritici, including race TTKS (syn. Ug99), and is used widely in commercial wheat cultivars worldwide. In 2006, susceptible infection responses were observed on wheat lines and cultivars carrying Sr24 in a field stem rust screening nursery at Njoro, Kenya. We derived 28 single-pustule isolates from stem rust samples collected from the 2006 Njoro nursery. The isolates were evaluated for virulence on 16 North American stem rust differential lines; on wheat lines carrying Sr24, Sr31, Sr38, and SrMcN; and on a wheat cultivar with a combination of Sr24 and Sr31. All isolates were identified as race TTKS with additional virulence on Sr31 and Sr38. These isolates were divided into two groups: group A (seven isolates and the two control isolates), producing a low infection type, and group B (21 isolates), producing a high infection type on Sr24, respectively. Isolates of group B represented a new variant of race TTKS with virulence to Sr24. Eighteen simple sequence repeat (SSR) markers were used to examine the genetic relationship between these two groups of isolates in race TTKS and five North American races (MCCF, QCCQ, RCRS, RTHS, and TPMK) that are representative of distinct lineage groups. All isolates of race TTKS shared an identical SSR genotype and were clearly different from North American races. The virulence and SSR data indicated that the new variant of race TTKS with Sr24 virulence likely has arisen via mutation within the TTKS genetic lineage. We propose to revise the North American stem rust nomenclature system by the addition of four genes (Sr24, Sr31, Sr38, and SrMcN) as the fifth set. This revision recognizes the virulence on Sr31 and differentiates isolates within race TTKS into two separate races: TTKSK and TTKST, with avirulence and virulence on Sr24, respectively. The occurrence of race TTKST with combined virulence on Sr24 and Sr31 has substantially increased the vulnerability of wheat to stem rust worldwide.


Cab Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources | 2006

Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen

Ravi P. Singh; David Hodson; Y. Jin; Julio Huerta-Espino; Miriam G. Kinyua; R. Wanyera; Peter Njau; Richard W. Ward

Stem or black rust, caused by Puccinia graminis tritici, has historically caused severe losses to wheat (Triticum aestivum) production worldwide. Successful control of the disease for over three decades through the use of genetic resistance has resulted in a sharp decline in research activity in recent years. Detection and spread in East Africa of race TTKS, commonly known as Ug99, is of high significance as most wheat cultivars currently grown in its likely migration path, i.e. to North Africa through Arabian Peninsula and then to Middle East and Asia, are highly susceptible to this race and the environment is conducive to disease epidemics. Identifying/developing adapted resistant cultivars in a relatively short time and replacing the susceptible cultivars before rust migrates out of East Africa is the strategy to mitigate potential losses. Although several alien genes will provide resistance to this race, the long-term strategy should focus on rebuilding the ‘Sr2-complex’ (combination of slow rusting gene Sr2 with other unknown additive genes of similar nature) to achieve long-term durability. A Global Rust Initiative has been launched to monitor the further migration of this race, facilitate field testing in Kenya or Ethiopia of wheat cultivars and germplasm developed by wheat breeding programmes worldwide, understand the genetic basis of resistanceespecially the durable type, carry out targeted breeding to incorporate diverse resistance genes into key cultivars and germplasm, and enhance the capacity of national programmes. A few wheat genotypes that combine stem rust resistance with high yield potential and other necessary traits have been identified but need rigorous field testing to determine their adaptation in target areas.


Plant Disease | 2007

Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici.

Yue Jin; Ravi P. Singh; Richard W. Ward; R. Wanyera; M.G. Kinyua; Peter Njau; T. Fetch; Z. A. Pretorius; A. Yahyaoui

Stem rust, caused by Puccinia graminis f. sp. tritici, historically was one of the most destructive diseases of wheat and barley. The disease has been under effective control worldwide through the widespread use of host resistance. A number of stem rust resistance genes in wheat have been characterized for their reactions to specific races of P. graminis f. sp. tritici. Adult plant responses to race TTKS (also known as Ug99) of monogenic lines for Sr genes, a direct measurement of the effectiveness for a given gene, have not been investigated to any extent. This report summarizes adult plant infection responses and seedling infection types for monogenic lines of designated Sr genes challenged with race TTKS. High infection types at the seedling stage and susceptible infection responses in adult plants were observed on monogenic lines carrying Sr5, 6, 7a, 7b, 8a, 8b, 9a, 9b, 9d, 9g, 10, 11, 12, 15, 16, 17, 18, 19, 20, 23, 30, 31, 34, 38, and Wld-1. Monogenic lines of resistance genes Sr13, 22, 24, 25, 26, 27, 28, 32, 33, 35, 36, 37, 39, 40, 44, Tmp, and Tt-3 were effective against TTKS both at the seedling and adult plant stages. The low infection types to race TTKS observed for these resistance genes corresponded to the expected low infections of these genes to other incompatible races of P. graminis f. sp. tritici. The level of resistance conferred by these genes at the adult plant stage varied between highly resistant to moderately susceptible. The results from this study were inconclusive for determining the effectiveness of resistance genes Sr9e, 14, 21, and 29 against race TTKS. The understanding of the effectiveness of individual Sr genes against race TTKS will facilitate the utilization of these genes in breeding for stem rust resistance in wheat.


Field Crops Research | 1995

Vernalization in wheat I. A model based on the interchangeability of plant age and vernalization duration

Shi-Ying Wang; Richard W. Ward; J. T. Ritchie; R.A. Fischer; Urs Schulthess

Abstract Vernalization treatments of 0 to 70 d initiated when 0 to 8 leaf tips were visible were applied to plants of the winter wheat ( Triticum aestivum L.) cultivars Pioneer 2548 and Augusta. All plants headed irrespective of duration of vernalization. Unvernalized plants of Pioneer 2548 and Augusta had mean final leaf numbers (FLN) of 20.8 ± 1.3 and 21.7 ± 1.0, respectively. Increased duration of vernalization generally reduced FLN within an age treatment until an age-dependent point of vernalization insensitivity was reached. Estimates of the minimum days of vernalization required to reach vernalization insensitivity decreased in a linear fashion as plant age at the onset of vernalization treatment increased. The number of leaves appearing after the onset of vernalization insensitivity averaged 6.3 ± 0.5. FLN minus six appears to be a valid estimate in our experimental conditions for the onset of vernalization insensitivity, at least for plants that had six or more leaves appearing after the end of vernalization treatment. Linear regressions of FLN minus six against days of vernalization were significant for both cultivars (for treatments with six or more leaves emerging after vernalization). The Y-intercepts of the fitted regressions were close to values obtained by subtracting six from FLN of unvernalized plants. Both intercept and slope were controlled genetically. Accumulated plant age, expressed as leaf stage, enables attainment of vernalization insensitivity, independent of, or in combination with vernalization treatment.


Theoretical and Applied Genetics | 1997

Genetic diversity in Eastern U.S. soft winter wheat (Triticum aestivum L. em. Thell.) based on RFLPs and coefficients of parentage

H. S. Kim; Richard W. Ward

Abstract Genetic diversity in a set of 11 red and 11 white wheat lines from the Eastern U.S. soft wheat germplasm pool was measured using restriction fragment length polymorphism (RFLP) assay and coefficients of parentage (COP) analysis. On average, 78% of all bands revealed by three enzymes with 48 RFLP clones were monomorphic. Average pairwise genetic similarity (GS) was 0.97 when data from all enzymes were pooled. Probe Polymorphic Information Content (PIC) indexes ranged from 0 to 0.73 with a mean of 0.2. Fewer than 55% of the probes revealed any polymorphism. The frequency of polymorphism in the Eastern U.S. soft white winter (SWW) wheat gene pool was much lower than that observed in the Eastern U.S. soft red winter (SRW) wheat gene pool. SWW lines formed a single group on a dendrogram based on cluster analysis of RFLP-derived GS estimates, while SRW lines did not form a single group.COP values for all pairs of the Eastern U.S. soft wheat lines ranged from 0.02 to 0.9 with a mean of 0.21. SWW wheat lines traced to 53 ancestral lines and had an average COP of 0.51. The SRW wheat gene pool had more complex parentages (mean COP=0.15 and a total of 65 ancestral lines). COPs were correlated with RFLP-based GS for all line pairs (r=0.73, P<0.01). However, correlations between the two similarity measures were substantially lower when the SRW and SWW wheat gene pools were considered individually (r values of 0.23 and 0.28, respectively). The actual GS among unrelated lines in the U.S. Eastern soft wheat gene pool appears to be higher than that observed for unrelated landraces from Southwest Asia (0.96 vs. 0.905), suggesting that the ancestral landrace parents of this gene pool were themselves drawn from a base population where inbreeding, i.e., F, was greater than zero.


Euphytica | 2000

Patterns of RFLP-based genetic diversity in germplasm pools of common wheat with different geographical or breeding program origins.

H. S. Kim; Richard W. Ward

A set of 292 accessions of common wheat (Triticum aestivum L.) representing 21 germplasm pools based on geographical or breeding program origins was assayed for RFLP diversity. Thirty cDNA and genomic DNA probes and the HindIII restriction enzyme were employed for RFLP analysis. About 61% of all 233 scored bands were present in 75% or more of the accessions. All but one of the 30 probes revealed polymorphism, and the average number of distinct patterns per probe over all accessions was 9.5.Polymorphic Information Content (PIC) values within a pool varied from 0 to 0.9 and depended on the identities of both the germplasm pool and the probe. Rare banding patterns with a relative frequency of ≤0.2 within a pool were detected. These rare patterns were more likely to occur in pools exhibiting high levels of heterogeneity. The highest level of polymorphism was observed in the Turkish landraces from Southwest Asia. The Eastern U.S. soft red winter wheat germplasm pool was more genetically diverse than the other advanced germplasm pools, and nearly as diverse as the Turkish landrace pool. RFLP-based genetic relationships between germplasm pools generally tracked expectations based on common geographical origin, breeding history and/or shared parentages. The Chinese wheat landraces from Sichuan, Tibet, and Yunnan provinces were distinct from other pools. Similarity matrices for among-pool genetic distance estimates based on either band frequencies or banding pattern frequencies showed good correlation with matrices derived from Nei and Lis mean genetic similarity estimates (r=−0.82** and r=−0.73**, respectively.


Theoretical and Applied Genetics | 2007

QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss

Guo Liang Jiang; Yanhong Dong; Jian Rong Shi; Richard W. Ward

Fusarium head blight (FHB or scab) caused by Fusarium species is a destructive disease in wheat, not only causing dramatic decrease of grain yield and quality, but also leading to serious mycotoxin contamination in the infected grains. This study was conducted to identify and quantify quantitative trait loci (QTLs) contributing to resistance to deoxynivalenol (DON) accumulation as well as to grain yield loss in a population of 152 F7 recombinant inbred lines (RILs) derived from the cross Veery/CJ 9306. DON content in scabby grains and relative decreases of yield components were analyzed. Two new QTLs (QFhs.nau-2DL and QFhs.nau-1AS) for resistance to DON accumulation caused by FHB in wheat were detected, and QTLs QFhs.ndsu-3BS and QFhs.nau-5AS were also validated in CJ 9306, based on a constructed genetic linkage map. On the average of three experiments, major QTLs QFhs.ndsu-3BS and QFhs.nau-2DL explained up to 23 and 20% of phenotypic variation, respectively. QFhs.nau-1AS and QFhs.nau-5AS separately explained 4–6% of phenotypic variation. The differences among years/experiments were significant for all the four QTLs. However, the QTL × environment interaction was significant only for QFhs.nau-2DL, but not for the others. The results suggest that simple sequence repeat (SSR) markers Xgwm533b associated with QFhs.ndsu-3BS, and Xgwm539 associated with QFhs.nau-2DL could be used in marker-assisted selection to enhance resistance to DON accumulation. QFhs.ndsu-3BS + QFhs.nau-2DL and QFhs.nau-2DL + QFhs.nau-5AS would be the optimum choices for two-locus combinations. QFhs.ndsu-3BS was also validated in CJ 9306 for resistance to grain yield loss, explaining 8–15% of phenotypic variation. No QTLs for resistance to DON accumulation or grain yield loss independent of Type II resistance were found. By comparison, however, either of QFhs.nau-2DL or QFhs.nau-5AS alone and their combination were more contributive to resistance to DON accumulation than to Type II resistance.


Euphytica | 2002

AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution

Samuel P. Hazen; Phillipe Leroy; Richard W. Ward

The amplified fragment length polymorphism (AFLP) procedure was applied to a diverse panel of wheat (Triticum aestivum L. em. Thell.) accessions and sixty-nine of the recombinant inbred lines (RILs) from the widely used genetic mapping population derived from the cross of Opata 85 and W7984. Most (76.8%) bands were monomorphic among T. aestivum accessions. The majority of bands monomorphic in T. aestivum also were present in the synthetic wheat parent (W7984). Ten primer pairs generated 153 polymorphic AFLP bands, 140 of which could be assigned to a chromosome location and were relatively evenly distributed on the genetic linkage map. AFLP loci in T. aestivum were distributed throughout the genome; they generally have only one detectable sequence variant; and they exhibit monogenic dominant mendelian inheritance. Frequencies of polymorphic bands in the germplasm sampled are in the range that enables informative cluster analyses as well as map-based diversity and association analysis studies. AFLP bands mapped to individual loci in the Opata 85/W7984 RIL population will frequently be polymorphic in other crosses or germplasm, irrespective of whether the band arises from the T. aestivum parent or the synthetic wheat parent.


Theoretical and Applied Genetics | 1998

Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and Southwest Asia

Richard W. Ward; Zhanlin Yang; H. S. Kim; C. Yen

Abstract Chinese accessions of Triticum tauschii and T. aestivum L. from the Sichuan white (SW), Yunnan hulled (YH), Tibetan weedrace (TW), and Xinjiang rice (XR) wheat groups were subjected to RFLP analysis. T. tauschii and landraces of T. aestivum from countries in Southwest Asia were also evaluated. For T. tauschii, a west to east gradient was apparent where the Chinese accessions exhibited less diversity than those from Southwest Asia. Compared to the Southwest Asian gene pool, the Chinese T. tauschii was highly homogeneous giving a low frequency of polymorphic bands (16%) and banding patterns (1.33 per probe) with 75 RFLP probe-HindIII combinations. Accessions of T. tauschii from Afghanistan and Pakistan were genetically more similar to the Chinese T. tauschii than those from Iran. Of 368 bands found for 39 Chinese hexaploid wheat accessions with 63 RFLP probe-HindIII combinations, 28.3% were polymorphic with an average of 2.6 banding patterns per probe and 5.0 bands per genotype. The individual Chinese landrace wheat groups revealed less variation than those from Afghanistan, Iran, and Turkey. When classified into country based groups, however, the diversity level over all Chinese landraces was greater than that of some Southwest Asian landraces, especially those from Afghanistan and Iran . The XR wheat group was genetically distinct from the other three Chinese landrace groups and was more related to the Southwest Asian landraces. The TW group was genetically similar to, but more diverse than, the SW and YH groups. The Chinese landraces had a higher degree of genetic relatedness to the Southwest Asian T. tauschii, particularly to accessions from Iran, rather than to the Chinese T. tauschii. ‘Chinese Spring’ was most related to ‘Chengdu-guang-tou’, a cultivar from the SW wheat group.

Collaboration


Dive into the Richard W. Ward's collaboration.

Top Co-Authors

Avatar

Lee Siler

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janet M. Lewis

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Yanhong Dong

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Guo Liang Jiang

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Perry K.W. Ng

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

E. Souza

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Urs Schulthess

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

J. T. Ritchie

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Guo-Liang Jiang

Nanjing Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge