Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard W. Zink is active.

Publication


Featured researches published by Richard W. Zink.


Journal of Medicinal Chemistry | 2014

Glucocorticoid receptor modulators informed by crystallography lead to a new rationale for receptor selectivity, function, and implications for structure-based design.

Matthew W. Carson; John G. Luz; Chen Suen; Chahrzad Montrose; Richard W. Zink; Xiaoping Ruan; Christine Cheng; Harlan W. Cole; Mary D. Adrian; Dan T. Kohlman; Thomas Edward Mabry; Nancy June Snyder; Brad Condon; Milan Maletic; David K. Clawson; Anna Pustilnik; Michael J. Coghlan

The structural basis of the pharmacology enabling the use of glucocorticoids as reliable treatments for inflammation and autoimmune diseases has been augmented with a new group of glucocorticoid receptor (GR) ligands. Compound 10, the archetype of a new family of dibenzoxepane and dibenzosuberane sulfonamides, is a potent anti-inflammatory agent with selectivity for the GR versus other steroid receptors and a differentiated gene expression profile versus clinical glucocorticoids (lower GR transactivation with comparable transrepression). A stereospecific synthesis of this chiral molecule provides the unique topology needed for biological activity and structural biology. In vivo activity of 10 in acute and chronic models of inflammation is equivalent to prednisolone. The crystal structure of compound 10 within the GR ligand binding domain (LBD) unveils a novel binding conformation distinct from the classic model adopted by cognate ligands. The overall conformation of the GR LBD/10 complex provides a new basis for binding, selectivity, and anti-inflammatory activity and a path for further insights into structure-based ligand design.


ACS Medicinal Chemistry Letters | 2011

Novel 3-aryl indoles as progesterone receptor antagonists for uterine fibroids.

Timothy I. Richardson; Christian Alexander Clarke; Kuo-Long Yu; Ying K. Yee; Thomas John Bleisch; Jose Eduardo Lopez; Scott Alan Jones; Norman E. Hughes; Brian Stephen Muehl; Charles Willis Lugar; Terry L. Moore; Pamela K. Shetler; Richard W. Zink; John J. Osborne; Chahrzad Montrose-Rafizadeh; Nita Patel; Andrew G. Geiser; Rachelle J. Sells Galvin; Jeffrey Alan Dodge

We report the synthesis and characterization of novel 3-aryl indoles as potent and efficacious progesterone receptor (PR) antagonists with potential for the treatment of uterine fibroids. These compounds demonstrated excellent selectivity over other steroid nuclear hormone receptors such as the mineralocorticoid receptor (MR). They were prepared from 2-bromo-6-nitro indole in four to six steps using a Suzuki cross-coupling as the key step. Compound 8f was orally active in the complement 3 model of progesterone antagonism in the rat uterus and demonstrated partial antagonism in the McPhail model of progesterone activity.


Journal of Medicinal Chemistry | 2016

The Discovery, Preclinical, and Early Clinical Development of Potent and Selective GPR40 Agonists for the Treatment of Type 2 Diabetes Mellitus (LY2881835, LY2922083, and LY2922470)

Chafiq Hamdouchi; Steven D. Kahl; Anjana Patel Lewis; Guemalli R. Cardona; Richard W. Zink; Keyue Chen; Thomas E. Eessalu; James Ficorilli; Marialuisa C. Marcelo; Keith A. Otto; Kelly L. Wilbur; Jayana P. Lineswala; Jared L. Piper; D. Scott Coffey; Stephanie Ann Sweetana; Joseph Haas; Dawn A. Brooks; Edward J. Pratt; Ruth M. Belin; Mark A. Deeg; Xiaosu Ma; Ellen A. Cannady; Jason T. Johnson; Nathan Yumibe; Qi Chen; Pranab Maiti; Chahrzad Montrose-Rafizadeh; Yanyun Chen; Anne Reifel Miller

The G protein-coupled receptor 40 (GPR40) also known as free fatty acid receptor 1 (FFAR1) is highly expressed in pancreatic, islet β-cells and responds to endogenous fatty acids, resulting in amplification of insulin secretion only in the presence of elevated glucose levels. Hypothesis driven structural modifications to endogenous FFAs, focused on breaking planarity and reducing lipophilicity, led to the identification of spiropiperidine and tetrahydroquinoline acid derivatives as GPR40 agonists with unique pharmacology, selectivity, and pharmacokinetic properties. Compounds 1 (LY2881835), 2 (LY2922083), and 3 (LY2922470) demonstrated potent, efficacious, and durable dose-dependent reductions in glucose levels along with significant increases in insulin and GLP-1 secretion during preclinical testing. A clinical study with 3 administered to subjects with T2DM provided proof of concept of 3 as a potential glucose-lowering therapy. This manuscript summarizes the scientific rationale, medicinal chemistry, preclinical, and early development data of this new class of GPR40 agonists.


Bioorganic & Medicinal Chemistry Letters | 2015

Design and synthesis of a novel series of [1-(4-hydroxy-benzyl)-1H-indol-5-yloxy]-acetic acid compounds as potent, selective, thyroid hormone receptor β agonists

Timothy Paul Burkholder; Brian Eugene Cunningham; Joshua Ryan Clayton; Peter Ambrose Lander; Matthew L. Brown; Robert Anthony Doti; Gregory L. Durst; Chahrzad Montrose-Rafizadeh; Constance King; Harold E. Osborne; Robert M. Amos; Richard W. Zink; Lawrence E. Stramm; Thomas P. Burris; Guemalli R. Cardona; Debra L. Konkol; Charles Reidy; Michael E. Christe; Michael James Genin

The design, synthesis, and structure activity relationships for a novel series of indoles as potent, selective, thyroid hormone receptor β (TRβ) agonists is described. Compounds with >50× binding selectivity for TRβ over TRα were generated and evaluation of compound 1c from this series in a model of dyslipidemia demonstrated positive effects on plasma lipid endpoints in vivo.


Journal of Medicinal Chemistry | 2018

Discovery of LY3104607: A Potent and Selective G Protein-Coupled Receptor 40 (GPR40) Agonist with Optimized Pharmacokinetic Properties to Support Once Daily Oral Treatment in Patients with Type 2 Diabetes Mellitus

Chafiq Hamdouchi; Pranab Maiti; Alan M. Warshawsky; Amy C. DeBaillie; Keith A. Otto; Kelly L. Wilbur; Steven D. Kahl; Anjana Patel Lewis; Guemalli R. Cardona; Richard W. Zink; Keyue Chen; Siddaramaiah Cr; Jayana P. Lineswala; Grace L. Neathery; Cecilia Bouaichi; Benjamin A. Diseroad; Alison N. Campbell; Stephanie Ann Sweetana; Lisa A. Adams; Over Cabrera; Xiaosu Ma; Nathan Yumibe; Chahrzad Montrose-Rafizadeh; Yanyun Chen; Anne Reifel Miller

As a part of our program to identify potent GPR40 agonists capable of being dosed orally once daily in humans, we incorporated fused heterocycles into our recently disclosed spiropiperidine and tetrahydroquinoline acid derivatives 1, 2, and 3 with the intention of lowering clearance and improving the maximum absorbable dose (Dabs). Hypothesis-driven structural modifications focused on moving away from the zwitterion-like structure. and mitigating the N-dealkylation and O-dealkylation issues led to triazolopyridine acid derivatives with unique pharmacology and superior pharmacokinetic properties. Compound 4 (LY3104607) demonstrated functional potency and glucose-dependent insulin secretion (GDIS) in primary islets from rats. Potent, efficacious, and durable dose-dependent reductions in glucose levels were seen during glucose tolerance test (GTT) studies. Low clearance, volume of distribution, and high oral bioavailability were observed in all species. The combination of enhanced pharmacology and pharmacokinetic properties supported further development of this compound as a potential glucose-lowering drug candidate.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification of potent and selective retinoic acid receptor gamma (RARγ) antagonists for the treatment of osteoarthritis pain using structure based drug design.

Norman E. Hughes; Thomas John Bleisch; Scott Alan Jones; Timothy I. Richardson; Robert Anthony Doti; Yong Wang; Stephanie L. Stout; Gregory L. Durst; Mark Chambers; J.L. Oskins; C. Lin; Lisa A. Adams; Todd J. Page; Robert J. Barr; Richard W. Zink; Harold E. Osborne; Chahrzad Montrose-Rafizadeh; Bryan H. Norman

A series of triaryl pyrazoles were identified as potent pan antagonists for the retinoic acid receptors (RARs) α, β and γ. X-ray crystallography and structure-based drug design were used to improve selectivity for RARγ by targeting residue differences in the ligand binding pockets of these receptors. This resulted in the discovery of novel antagonists which maintained RARγ potency but were greater than 500-fold selective versus RARα and RARβ. The potent and selective RARγ antagonist LY2955303 demonstrated good pharmacokinetic properties and was efficacious in the MIA model of osteoarthritis-like joint pain. This compound demonstrated an improved margin to RARα-mediated adverse effects.


Journal of Biomolecular Screening | 2011

Development of an HTS-Compatible Assay for Discovery of RORα Modulators Using AlphaScreen® Technology

Monica A. Istrate; Timothy P. Spicer; Yan Wang; Jerrold A. Bernard; Leah M. Helvering; Wayne P. Bocchinfuso; Timothy I. Richardson; Richard W. Zink; Naresh Kumar; Chahrzad Montrose-Rafizadeh; Jeffrey Alan Dodge; Peter Hodder; Patrick R. Griffin

The retinoid acid receptor–related orphan receptors (RORs) represent important targets for the treatment of metabolic and immune disorders. Here the authors describe the application of AlphaScreen® technology to develop a high-throughput screening (HTS)–compatible assay to facilitate the discovery of RORα modulators. Using the ligand binding domain (LBD) of RORα and a peptide derived from the NR1 box of the nuclear receptor coactivator PGC-1α, a 384-well format assay was developed exhibiting high sensitivity, requiring only low nanomolar concentration of reagents. Recently, it was shown that oxysterols such as 7α-hydroxycholesterol (7α-OHC) function as modulators of the RORs. In this assay, 7α-OHC produced a concentration-response curve with an EC50 of 162 nM, a Z′ factor of 0.6, and a signal-to-background (S/B) ratio of 4.2, demonstrating that the assay is HTS compatible. Validation of the assay was afforded by screening against the Sigma LOPAC1280™ library in a 384-well format. In summary, the results presented here demonstrate that this assay can be used to screen large chemical libraries to discover novel modulators of RORα.


Molecular Pharmacology | 2004

The Hypolipidemic Natural Product Guggulsterone is a Promiscuous Steroid Receptor Ligand

Thomas P. Burris; Chahrzad Montrose; Keith A. Houck; Harold E. Osborne; Wayne P. Bocchinfuso; Benjamin C. Yaden; Christine Cheng; Richard W. Zink; Robert J. Barr; Christopher D. Hepler; Venkatesh Krishnan; Heather Bullock; Lorri L Burris; Rachelle J. Sells Galvin; Kelli S. Bramlett; Keith R. Stayrook


Molecular Endocrinology | 2005

A Peroxisome Proliferator-Activated Receptor α/γ Dual Agonist with a Unique in Vitro Profile and Potent Glucose and Lipid Effects in Rodent Models of Type 2 Diabetes and Dyslipidemia

Anne Reifel-Miller; Keith A. Otto; Eric Hawkins; Robert J. Barr; William R. Bensch; Chris Bull; Sharon Dana; Kay Klausing; Jose-Alfredo Martin; Ronit Rafaeloff-Phail; Chahrzad Rafizadeh-Montrose; Gary A. Rhodes; Roger L. Robey; Isabel Rojo; Deepa Rungta; David Snyder; Kelly L. Wilbur; Tony Y. Zhang; Richard W. Zink; Alan M. Warshawsky; Joseph T. Brozinick


Journal of Medicinal Chemistry | 2003

Design and synthesis of a potent and selective triazolone-based peroxisome proliferator-activated receptor α agonist

Yanping Xu; Daniel Ray Mayhugh; Ashraf Saeed; Xiaodong Wang; Richard Craig Thompson; Samuel J. Dominianni; Raymond F. Kauffman; Jaipal Singh; James S. Bean; William R. Bensch; Robert J. Barr; John Osborne; Chahrzad Montrose-Rafizadeh; Richard W. Zink; Nathan Yumibe; Naijia Huang; Debra Luffer-Atlas; Deepa Rungta; Dale E. Maise; Nathan Bryan Mantlo

Collaboration


Dive into the Richard W. Zink's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian A. Oldham

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carol L. Broderick

SUNY Downstate Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge