Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Warlimont is active.

Publication


Featured researches published by Richard Warlimont.


Monatshefte für Mathematik | 1977

Über die Häufigkeit großer Differenzen konsekutiver Primzahlen

Richard Warlimont

The following theorem is going to be proved. Letpm be them-th prime and putdm:=pm+1−pm. LetN(σ,T), 1/2≤σ≤1,T≥3. denote the number of zeros ϱ=β+iγ of the Riemann zeta function which fulfill β≥σ and |γ|≤T. Letc≥2 andh≥0 be constants such thatN(σ,T)≪Tc(1−σ) (logT)h holds true uniformly in 1/2≤σ≤1. Let ε>0 be given. Then there is some constantK>0 such that


Monatshefte für Mathematik | 2000

On the Distribution of the Degrees of Prime Element Factors in Additive Arithmetical Semigroups

Richard Warlimont

Abstract. Results of Arnold Knopfmacher about the distribution of the degrees of irreducible factors in the canonical decomposition of monic polynomials in ?q[X] are generalized to additive arithmetical semigroups (G,∂) satisfying a weak condition called axiom ?


Monatshefte für Mathematik | 1976

Euler-Summierbarkeit konform-äquivalenter Reihen

Richard Warlimont

AbstractLet Φ be a conformal one to one mapping of the unit disc with Φ (1)=1. Given the convergent series Σan putf(z):=Σanzn, |z|<1, and letan(Φ) be defined by the relation


Monatshefte für Mathematik | 1995

Arithmetical semigroups III: Elements with prime factors in residue classes

Richard Warlimont


Monatshefte für Mathematik | 1990

Sieving by large prime factors

Richard Warlimont

f(\Phi (w)) = \sum\limits_{n = 0}^\infty {a_n } (\Phi )w^n ,\left| w \right|< 1.


Monatshefte für Mathematik | 1984

Covering Sets by Subsets.

Richard Warlimont


Monatshefte für Mathematik | 1978

ber die kleinste natrliche Zahl maximaler Ordnung modm

Richard Warlimont

The series Σan(Φ) is called the conformal equivalent of Σan with respect to Φ and need not converge as was discovered byTurán. We prove that it is nevertheless summable (E;q),q>0.


Monatshefte für Mathematik | 1969

On squarefree numbers in arithmetic progressions

Richard Warlimont

We study the distribution of elements in an additive arithmetical semigroup (G, ∂) (as introduced by John Knopfmacher) in whose canonical decomposition the degrees of the prime elements belong to a given union of residue classes modk.


Monatshefte für Mathematik | 1970

Eine Bemerkung zu einem Ergebnis von N. G. de Bruijn

Richard Warlimont

LetQ be a set of primes with density <1. An asymptotic is proved for the number of positive integers ≦x which do not have a prime divisor which is >y and belongs toQ.


Monatshefte für Mathematik | 1979

Eine Bemerkung ber quadratfreie Zahlen ?1 (mod k )

Richard Warlimont

Let to every elementx of a finite setM be associated some nonempty subsetM (x) ofM in such a way that the implicationy∈M(x)⇒x∈M(y) is fulfilled. We prove two upper estimations for the least number of setsM(x) which are necessary to coverM. Several applications to number theory are presented.

Collaboration


Dive into the Richard Warlimont's collaboration.

Researchain Logo
Decentralizing Knowledge