Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard Woessner is active.

Publication


Featured researches published by Richard Woessner.


Blood | 2012

Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma

Deborah J. Kuhn; Zuzana Berkova; Richard J. Jones; Richard Woessner; Chad C. Bjorklund; Wencai Ma; R. Eric Davis; Pei Lin; Hua Wang; Timothy Madden; Caimiao Wei; Veerabhadran Baladandayuthapani; Michael Wang; Sheeba K. Thomas; Jatin J. Shah; Donna M. Weber; Robert Z. Orlowski

Proteasome inhibition with bortezomib is a validated approach to the treatment of multiple myeloma, but drug resistance often emerges and limits its utility in the retreatment setting. To begin to identify some of the mechanisms involved, we developed bortezomib-resistant myeloma cell lines that, unlike previously reported models, showed no β5 subunit mutations. Instead, up-regulation of the insulin-like growth factor (IGF)-1 axis was identified, with increased autocrine and paracrine secretion of IGF-1, leading to increased activation of the IGF-1 receptor (IGF-1R). Exogenous IGF-1 reduced cellular sensitivity to bortezomib, whereas pharmacologic or small hairpin RNA-mediated IGF-1R suppression enhanced bortezomib sensitivity in cell lines and patient samples. In vitro studies with OSI-906, a clinically relevant dual IGF-1R and insulin receptor inhibitor, showed it acted synergistically with bortezomib, and potently resensitized bortezomib-resistant cell lines and patient samples to bortezomib. Importantly, OSI-906 in combination with bortezomib also overcame bortezomib resistance in an in vivo model of myeloma. Taken together, these data support the hypothesis that signaling through the IGF-1/IGF-1R axis contributes to acquired bortezomib resistance, and provide a rationale for combining bortezomib with IGF-1R inhibitors like OSI-906 to overcome or possibly prevent the emergence of bortezomib-refractory disease in the clinic.


Science Translational Medicine | 2015

AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer

David S. Hong; Razelle Kurzrock; Youngsoo Kim; Richard Woessner; Anas Younes; John Nemunaitis; Nathan Fowler; Tianyuan Zhou; Joanna Schmidt; Minji Jo; Samantha J. Lee; Mason Yamashita; Steven G. Hughes; Luis Fayad; Sarina Anne Piha-Paul; Murali Vp Nadella; Morvarid Mohseni; Deborah Lawson; Corinne Reimer; David C. Blakey; Xiaokun Xiao; Jeff Hsu; Alexey S. Revenko; Brett P. Monia; A. Robert MacLeod

Systemically administered antisense oligonucleotide AZD9150 inhibits STAT3 and shows anticancer activity in preclinical models and patients. Blocking transcription in tumors, STAT STAT3 is a transcription factor that plays an oncogenic role in many cancers, which has proven very difficult to target with chemical inhibitors. Now, Hong et al. have demonstrated that antisense technology is a feasible alternative to small-molecule inhibitors for targeting STAT3. The authors used high-affinity next-generation antisense oligonucleotides, which have higher potency than previous generations and can be systemically administered without a lipid vehicle. One of these new antisense oligonucleotides, AZD9150, demonstrated activity in a variety of preclinical cancer models, as well as in cancer patients who have failed one or more previous treatments, paving the way for additional clinical testing of this therapy. Next-generation sequencing technologies have greatly expanded our understanding of cancer genetics. Antisense technology is an attractive platform with the potential to translate these advances into improved cancer therapeutics, because antisense oligonucleotide (ASO) inhibitors can be designed on the basis of gene sequence information alone. Recent human clinical data have demonstrated the potent activity of systemically administered ASOs targeted to genes expressed in the liver. We describe the preclinical activity and initial clinical evaluation of a class of ASOs containing constrained ethyl modifications for targeting the gene encoding the transcription factor STAT3, a notoriously difficult protein to inhibit therapeutically. Systemic delivery of the unformulated ASO, AZD9150, decreased STAT3 expression in a broad range of preclinical cancer models and showed antitumor activity in lymphoma and lung cancer models. AZD9150 preclinical activity translated into single-agent antitumor activity in patients with highly treatment-refractory lymphoma and non–small cell lung cancer in a phase 1 dose-escalation study.


Molecular Cancer Therapeutics | 2010

Mcl-1 Stability Determines Mitotic Cell Fate of Human Multiple Myeloma Tumor Cells Treated with the Kinesin Spindle Protein Inhibitor ARRY-520

Brian Tunquist; Richard Woessner; Duncan Walker

Kinesin spindle protein (KSP/Eg5) inhibitors are novel anticancer agents that have thus far shown only modest activity in the clinic. Understanding how to identify patients who may be most sensitive to treatment is clearly needed to improve the development of these molecules. We studied four multiple myeloma cell lines treated with the KSP inhibitor ARRY-520 to identify factors important for initiating apoptosis while cells are arrested in mitosis. The majority (three of four) of cell lines underwent mitotic arrest, with apoptosis occurring in mitosis within 24 to 30 hours. The remaining line (NCI H929) is temporally refractory to ARRY-520 treatment, undergoing mitotic slippage and subsequently peaking in apoptotic markers after 72 hours of treatment, while most cells are in interphase. Interestingly, loss of the antiapoptotic protein myeloid cell leukemia 1 (Mcl-1) coincided with mitotic cell death. Stabilization of Mcl-1 resulted in a delayed onset of apoptosis, whereas enforced downregulation of Mcl-1 increased cell death in response to KSP inhibition. Thus, variation in responses to KSP inhibition is governed by a balance between survival proteins and spindle checkpoint integrity. Cells relying on short-lived survival proteins during mitosis are more likely to undergo apoptosis in response to KSP inhibition. We propose that patients with hematologic malignancies, which rely on Mcl-1, would therefore be good candidates for treatment with KSP inhibitors. Mol Cancer Ther; 9(7); 2046–56. ©2010 AACR.


ACS Medicinal Chemistry Letters | 2011

Pyrazolopyridine Inhibitors of B-Raf(V600E). Part 1: The Development of Selective, Orally Bioavailable, and Efficacious Inhibitors.

Steve Wenglowsky; Li Ren; Ellen R. Laird; Ignacio Aliagas; Bruno Alicke; Alex J. Buckmelter; Edna F. Choo; Victoria Dinkel; Bainian Feng; Susan L. Gloor; Stephen E. Gould; Stefan Gross; Janet Gunzner-Toste; Joshua D. Hansen; Georgia Hatzivassiliou; Bonnie Liu; Kim Malesky; Simon Mathieu; Brad Newhouse; Nicholas Raddatz; Yingqing Ran; Sumeet Rana; Nikole Randolph; Tyler Risom; Joachim Rudolph; Scott Savage; LeAnn T. Selby; Michael Shrag; Kyung Song; Hillary L. Sturgis

The V600E mutation of B-Raf kinase results in constitutive activation of the MAPK signaling pathway and is present in approximately 7% of all cancers. Using structure-based design, a novel series of pyrazolopyridine inhibitors of B-Raf(V600E) was developed. Optimization led to the identification of 3-methoxy pyrazolopyridines 17 and 19, potent, selective, and orally bioavailable agents that inhibited tumor growth in a mouse xenograft model driven by B-Raf(V600E) with no effect on body weight. On the basis of their in vivo efficacy and preliminary safety profiles, 17 and 19 were selected for further preclinical evaluation.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of pyrrolopyrimidine inhibitors of Akt.

James F. Blake; Nicholas C. Kallan; Dengming Xiao; Rui Xu; Josef R. Bencsik; Nicholas J. Skelton; Keith L. Spencer; Ian S. Mitchell; Richard Woessner; Susan L. Gloor; Tyler Risom; Stefan Gross; Matthew Martinson; Tony Morales; Guy Vigers; Barbara J. Brandhuber

The discovery and optimization of a series of pyrrolopyrimidine based protein kinase B (Pkb/Akt) inhibitors discovered via HTS and structure based drug design is reported. The compounds demonstrate potent inhibition of all three Akt isoforms and knockdown of phospho-PRAS40 levels in LNCaP cells and tumor xenografts.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery of dihydrothieno- and dihydrofuropyrimidines as potent pan Akt inhibitors.

Josef R. Bencsik; Dengming Xiao; James F. Blake; Nicholas C. Kallan; Ian S. Mitchell; Keith L. Spencer; Rui Xu; Susan L. Gloor; Matthew Martinson; Tyler Risom; Richard Woessner; Faith P. Dizon; Wen-I Wu; Guy Vigers; Barbara J. Brandhuber; Nicholas J. Skelton; Wei Wei Prior; Lesley J. Murray

Herein we report the discovery and synthesis of a novel series of dihydrothieno- and dihydrofuropyrimidines (2 and 3) as potent pan Akt inhibitors. Utilizing previous SAR and analysis of the amino acid sequences in the binding site we have designed inhibitors displaying increased PKA and general kinase selectivity with improved tolerability compared to the progenitor pyrrolopyrimidine (1). A representative dihydrothieno compound (34) was advanced into a PC3-NCI prostate mouse tumor model in which it demonstrated a dose-dependent reduction in tumor growth and stasis when dosed orally daily at 200 mg/kg.


ACS Medicinal Chemistry Letters | 2014

Discovery of a Novel Class of Imidazo[1,2-a]Pyridines with Potent PDGFR Activity and Oral Bioavailability.

Erik James Hicken; Fred P. Marmsater; Mark Munson; Stephen T. Schlachter; John E. Robinson; Shelley Allen; Laurence E. Burgess; Robert Kirk Delisle; James P. Rizzi; George T. Topalov; Qian Zhao; Julie M. Hicks; Nicholas C. Kallan; Eugene Tarlton; Andrew Allen; Michele Callejo; April Cox; Sumeet Rana; Nathalie Klopfenstein; Richard Woessner; Joseph P. Lyssikatos

The in silico construction of a PDGFRβ kinase homology model and ensuing medicinal chemistry guided by molecular modeling, led to the identification of potent, small molecule inhibitors of PDGFR. Subsequent exploration of structure-activity relationships (SAR) led to the incorporation of a constrained secondary amine to enhance selectivity. Further refinements led to the integration of a fluorine substituted piperidine, which resulted in significant reduction of P-glycoprotein (Pgp) mediated efflux and improved bioavailability. Compound 28 displayed oral exposure in rodents and had a pronounced effect in a pharmacokinetic-pharmacodynamic (PKPD) assay.


Proceedings of the National Academy of Sciences of the United States of America | 2017

Cytokine receptor signaling is required for the survival of ALK− anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations

Jing Chen; Yong Zhang; Michael N. Petrus; Wenming Xiao; Alina Nicolae; Mark Raffeld; Stefania Pittaluga; Richard Bamford; Masao Nakagawa; Sunny Tianyi Ouyang; Alan L. Epstein; Marshall E. Kadin; Annarose Del Mistro; Richard Woessner; Elaine S. Jaffe; Thomas A. Waldmann

Significance Activating Janus kinase (JAK) mutations occur only in a minority of T-cell malignancies, which would appear to limit the clinical application of JAK inhibition for these diseases. Our study suggests that targeting JAK might be of value in treating diverse forms of anaplastic lymphoma kinase (ALK)− anaplastic large cell lymphoma (ALCL). Most exogenous cytokine-independent ALK− ALCL cells of diverse origins responded to JAK inhibition regardless of JAK mutation status. The JAK inhibitor sensitivity of these cells correlated with their positive signal transducer and activator of transcription 3 (STAT3) phosphorylation status. Using retroviral shRNA knockdown, we showed that all JAK inhibitor-sensitive cells were dependent on JAK1/STAT3 for survival. Cytokine receptor signaling and gain-of-function JAK1/STAT3 mutations contribute to JAK1/STAT3 dependency. Our data suggest that JAK inhibition maybe a rational therapy for patients with phosphorylated STAT3+ ALK− ALCL. Activating Janus kinase (JAK) and signal transducer and activator of transcription (STAT) mutations have been discovered in many T-cell malignancies, including anaplastic lymphoma kinase (ALK)− anaplastic large cell lymphomas (ALCLs). However, such mutations occur in a minority of patients. To investigate the clinical application of targeting JAK for ALK− ALCL, we treated ALK− cell lines of various histological origins with JAK inhibitors. Interestingly, most exogenous cytokine-independent cell lines responded to JAK inhibition regardless of JAK mutation status. JAK inhibitor sensitivity correlated with the STAT3 phosphorylation status of tumor cells. Using retroviral shRNA knockdown, we have demonstrated that these JAK inhibitor-sensitive cells are dependent on both JAK1 and STAT3 for survival. JAK1 and STAT3 gain-of-function mutations were found in some, but not all, JAK inhibitor-sensitive cells. Moreover, the mutations alone cannot explain the JAK1/STAT3 dependency, given that wild-type JAK1 or STAT3 was sufficient to promote cell survival in the cells that had either JAK1or STAT3 mutations. To investigate whether other mechanisms were involved, we knocked down upstream receptors GP130 or IL-2Rγ. Knockdown of GP130 or IL-2Rγ induced cell death in selected JAK inhibitor-sensitive cells. High expression levels of cytokines, including IL-6, were demonstrated in cell lines as well as in primary ALK− ALCL tumors. Finally, ruxolitinib, a JAK1/2 inhibitor, was effective in vivo in a xenograft ALK− ALCL model. Our data suggest that cytokine receptor signaling is required for tumor cell survival in diverse forms of ALK− ALCL, even in the presence of JAK1/STAT3 mutations. Therefore, JAK inhibitor therapy might benefit patients with ALK− ALCL who are phosphorylated STAT3+.


Cancer Research | 2010

Abstract 2515: Preclinical Development of ARRY-162, A Potent and Selective MEK 1/2 Inhibitor

Patrice Lee; Eli M. Wallace; Allison L. Marlow; Tammie C. Yeh; Vivienne Marsh; Deborah Anderson; Richard Woessner; Brian T. Hurley; Joseph P. Lyssikatos; Gregory Poch; Stefan Gross; Sumeet Rana; Shannon L. Winski; Kevin Koch

Activation of the Ras/Raf/MEK/MAP kinase pathway is implicated in uncontrolled cell proliferation and tumor growth. Inappropriate activation of the RAS pathway can occur through several distinct mechanisms, including activating mutations in Ras and B-raf, or activated growth factor-signaling, cytokines and stress responses. Mutated, oncogenic forms of Ras are found in 50% of colon, 90% of pancreatic, and 30% of lung cancers. Also, B-Raf mutations have been identified in more than 60% of malignant melanomas and from 40-70% of papillary thyroid cancers. MEK, a dual specific kinase, is a key player in this pathway; it is downstream of both Ras and Raf and activates ERK1/2 through phosphorylation of key tyrosine and threonine residues. These data suggest that targeting MEK can inhibit cancer cell signaling mediated by a wide variety of signals, making MEK an attractive target for the treatment of cancer. We have discovered ARRY-162, a novel ATP-uncompetitive inhibitor of MEK 1/2, which is un-competitive with respect to ATP. ARRY-162 has nanomolar activity against purified MEK enzyme (IC50 = 12 nM) and is highly selective. It has been evaluated against 220 serine/threonine and tyrosine kinases with no inhibitory activity observed up to 20 μM. ARRY-162 inhibits both basal and induced levels of ERK phosphorylation in numerous cancer cell lines with IC50s as low as 5 nM. ARRY-162 is especially potent at inhibiting the cell proliferation of mutant B-Raf and Ras cell lines such as HT29, Malme-3M, SK-MEL-2, COLO 205, SK-MEL-28 and A375 (IC50s from 30-250 nM). In vivo, ARRY-162 has demonstrated efficacy in several xenograft tumor models in mice, including HT29, BxPC3, MIA PaCa2, A549, LoVo, Calu6, DU145 and COLO 205. In the HT29 and in the COLO 205 colon carcinoma models, dose-dependent inhibition of tumor growth (up to 75% TGI) was observed at doses ranging from 3 to 30 mg/kg, QD, PO for 21 days. In the Colo-205 colon carcinoma model, significant tumor regressions were observed with 50% partial responses and 13% complete responses at 30 mg/kg, PO, QD. In the BxPC3 pancreatic carcinoma model (which does not harbor either Ras or Raf mutations), tumor growth inhibition (∼70% TGI) and 13% partial responses were seen at doses of 30 mg/kg, QD, PO for 21 days. Consistent with ARRY-1629s mechanism of action, tumor growth inhibition correlates with decreased phospho-ERK levels in tumor xenografts. In addition to its potency against MEK, this compound demonstrates other desirable attributes for development including good physical chemical characteristics, low clearance, medium-to-high Caco-2 permeability and minimal predicted drug-drug interactions. With preclinical efficacy and safety studies on ARRY-162 completed, this compound has entered clinical development for treatment of cancer. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 2515.


Expert Opinion on Therapeutic Patents | 2017

Inhibitors of JAK-family kinases: an update on the patent literature 2013-2015, part 1.

Jason Grant Kettle; Annika Åstrand; Matthew Catley; Neil Grimster; Magnus K Nilsson; Qibin Su; Richard Woessner

ABSTRACT Introduction: Janus kinases (JAKs) are a family of four enzymes; JAK1, JAK2, JAK3 and tyrosine kinase 2 (TYK2) that are critical in cytokine signalling and are strongly linked to both cancer and inflammatory diseases. There are currently two launched JAK inhibitors for the treatment of human conditions: tofacitinib for Rheumatoid arthritis (RA) and ruxolitinib for myeloproliferative neoplasms including intermediate or high risk myelofibrosis and polycythemia vera. Areas covered: This review covers patents claiming activity against one or more JAK family members in the period 2013–2015 inclusive, and covers 95 patents from 42 applicants, split over two parts. The authors have ordered recent patents according to the primary applicant’s name, with part 1 covering A through to I. Expert opinion: Inhibition of JAK-family kinases is an area of growing interest, catalysed by the maturity of data on marketed inhibitors ruxolitinib and tofacitinib in late stage clinical trials. Many applicants are pursuing traditional fast-follower strategies around these inhibitors, with a range of chemical strategies adopted. The challenge will be to show sufficient differentiation to the originator compounds, since dose limiting toxicities with such agents appear to be on target and mechanism-related and also considering that such agents may be available as generic compounds by the time follower agents reach market.

Collaboration


Dive into the Richard Woessner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge