Richard Wubbolts
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Richard Wubbolts.
Journal of Biological Chemistry | 2003
Richard Wubbolts; Rachel S. Leckie; Peter T. M. Veenhuizen; Guenter Schwarzmann; Wiebke Möbius; Joerg Hoernschemeyer; Jan-Willem Slot; Hans J. Geuze; Willem Stoorvogel
Exosomes are 60–100-nm membrane vesicles that are secreted into the extracellular milieu as a consequence of multivesicular body fusion with the plasma membrane. Here we determined the protein and lipid compositions of highly purified human B cell-derived exosomes. Mass spectrometric analysis indicated the abundant presence of major histocompatibility complex (MHC) class I and class II, heat shock cognate 70, heat shock protein 90, integrin α4, CD45, moesin, tubulin (α and β), actin, Giα2, and a multitude of other proteins. An α4-integrin may direct B cell-derived exosomes to follicular dendritic cells, which were described previously as potential target cells. Clathrin, heat shock cognate 70, and heat shock protein 90 may be involved in protein sorting at multivesicular bodies. Exosomes were also enriched in cholesterol, sphingomyelin, and ganglioside GM3, lipids that are typically enriched in detergent-resistant membranes. Most exosome-associated proteins, including MHC class II and tetraspanins, were insoluble in 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS)-containing buffers. Multivesicular body-linked MHC class II was also resistant to CHAPS whereas plasma membrane-associated MHC class II was solubilized readily. Together, these data suggest that recruitment of membrane proteins from the limiting membranes into the internal vesicles of multivesicular bodies may involve their incorporation into tetraspanin-containing detergent-resistant membrane domains.
Current Biology | 2001
Ingrid Jordens; Mar Fernandez-Borja; Marije Marsman; Simone Dusseljee; Lennert Janssen; Jero Calafat; Hans Janssen; Richard Wubbolts; Jacques Neefjes
Many intracellular compartments, including MHC class II-containing lysosomes, melanosomes, and phagosomes, move along microtubules in a bidirectional manner and in a stop-and-go fashion due to the alternating activities of a plus-end directed kinesin motor and a minus-end directed dynein-dynactin motor. It is largely unclear how motor proteins are targeted specifically to different compartments. Rab GTPases recruit and/or activate several proteins involved in membrane fusion and vesicular transport. They associate with specific compartments after activation, which makes Rab GTPases ideal candidates for controlling motor protein binding to specific membranes. We and others [7] have identified a protein, called RILP (for Rab7-interacting lysosomal protein), that interacts with active Rab7 on late endosomes and lysosomes. Here we show that RILP prevents further cycling of Rab7. RILP expression induces the recruitment of functional dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Consequently, these compartments are transported by these motors toward the minus end of microtubules, effectively inhibiting their transport toward the cell periphery. This signaling cascade may be responsible for timed and selective dynein motor recruitment onto late endosomes and lysosomes.
Traffic | 2009
Sonja I. Buschow; Esther N.M. Nolte-'t Hoen; Guillaume van Niel; Maaike S. Pols; Toine ten Broeke; Marjolein M. Lauwen; Ferry Ossendorp; Cornelis J. M. Melief; Graça Raposo; Richard Wubbolts; Marca H. M. Wauben; Willem Stoorvogel
Dendritic cells (DCs) express major histocompatibility complex class II (MHC II) to present peptide antigens to T cells. In immature DCs, which bear low cell surface levels of MHC II, peptide‐loaded MHC II is ubiquitinated. Ubiquitination drives the endocytosis and sorting of MHC II to the luminal vesicles of multivesicular bodies (MVBs) for lysosomal degradation. Ubiquitination of MHC II is abrogated in activated DCs, resulting in an increased cell surface expression. We here provide evidence for an alternative MVB sorting mechanism for MHC II in antigen‐loaded DCs, which is triggered by cognately interacting antigen‐specific CD4+ T cells. At these conditions, DCs generate MVBs with MHC II and CD9 carrying luminal vesicles that are secreted as exosomes and transferred to the interacting T cells. Sorting of MHC II into exosomes was, in contrast to lysosomal targeting, independent of MHC II ubiquitination but rather correlated with its incorporation into CD9 containing detergent‐resistant membranes. Together, these data indicate two distinct MVB pathways: one for lysosomal targeting and the other for exosome secretion.
Development | 2012
Ewart W. Kuijk; Leni T. A. van Tol; Hilde Van de Velde; Richard Wubbolts; Maaike Welling; Niels Geijsen; Bernard A.J. Roelen
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.
Molecular and Cellular Biology | 1991
René H. Medema; Richard Wubbolts; Johannes L. Bos
Insulin induces a rapid activation of p21ras in NIH 3T3 and Chinese hamster ovary cells that overexpress the insulin receptor. Previously, we suggested that p21ras may mediate insulin-induced gene expression. To test such a function of p21ras more directly, we studied the effect of different dominant inhibitory mutants of p21ras on the induction of gene expression in response to insulin. We transfected a collagenase promoter-chloramphenicol acetyltransferase (CAT) gene or a fos promoter-luciferase gene into NIH 3T3 cells that overexpressed the insulin receptor. The activities of both promoters were strongly induced after treatment with insulin. This induction could be suppressed by cotransfection of two inhibitory mutant ras genes, H-ras(Asn-17) or H-ras(Leu-61,Ser-186). In particular, insulin-induced activation of the fos promoter was inhibited completely by H-ras(Asn-17). These results show that p21ras functions as an intermediate in the insulin signal transduction route leading to the induction of gene expression.
Current Opinion in Cell Biology | 2008
Guillaume van Niel; Richard Wubbolts; Willem Stoorvogel
Dendritic cells (DCs) initiate primary immune responses by presenting pathogen-derived antigens in association with major histocompatibility Class II molecules (MHC II) to T cells. In DCs, MHC II is constitutively synthesized and loaded at endosomes with peptides from hydrolyzed endogenous proteins or exogenously acquired antigens. Whether peptide loaded MHC II (MHC II-p) is subsequently recruited to and stably expressed at the plasma membrane or degraded in lysosomes is determined by the status of the DC. In immature DCs, MHC II-p is ubiquitinated after peptide loading, driving its sorting to the luminal vesicles of multivesicular bodies. These luminal vesicles, and the MHC II-p they carry, are delivered to lysosomes for degradation. MHC II-p is inefficiently ubiquitinated in DCs that are activated by pathogens or inflammatory stimuli, thus allowing its transfer to and stable expression at the plasma membrane.
Journal of Virology | 2014
Oliver Wicht; Wentao Li; Lione Willems; Tom J. Meuleman; Richard Wubbolts; Frank J. M. van Kuppeveld; Peter J. M. Rottier; Berend Jan Bosch
ABSTRACT Isolation of porcine epidemic diarrhea coronavirus (PEDV) from clinical material in cell culture requires supplementation of trypsin. This may relate to the confinement of PEDV natural infection to the protease-rich small intestine of pigs. Our study focused on the role of protease activity on infection by investigating the spike protein of a PEDV isolate (wtPEDV) using a reverse genetics system based on the trypsin-independent cell culture-adapted strain DR13 (caPEDV). We demonstrate that trypsin acts on the wtPEDV spike protein after receptor binding. We mapped the genetic determinant for trypsin-dependent cell entry to the N-terminal region of the fusion subunit of this class I fusion protein, revealing a conserved arginine just upstream of the putative fusion peptide as the potential cleavage site. Whereas coronaviruses are typically processed by endogenous proteases of the producer or target cell, PEDV S protein activation strictly required supplementation of a protease, enabling us to study mechanistic details of proteolytic processing. IMPORTANCE Recurring PEDV epidemics constitute a serious animal health threat and an economic burden, particularly in Asia but, as of recently, also on the North-American subcontinent. Understanding the biology of PEDV is critical for combatting the infection. Here, we provide new insight into the protease-dependent cell entry of PEDV.
Arthritis Research & Therapy | 2013
Lucas A. Smolders; Björn P. Meij; David Onis; Frank M. Riemers; Niklas Bergknut; Richard Wubbolts; Guy C. M. Grinwis; Martin Houweling; Marian J. A. Groot Koerkamp; Dik van Leenen; Frank C. P. Holstege; H.A.W. Hazewinkel; Laura B. Creemers; Louis C. Penning; Marianna A. Tryfonidou
IntroductionEarly degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration.MethodsDual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age.ResultsEarly IVD degeneration involved significant changes in numerous pathways, including Wnt/β-catenin signaling. With regard to Wnt/β-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells.ConclusionsEarly IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration.
Immunological Reviews | 1999
Richard Wubbolts; Jacques Neefjes
Summary: MHC dass II molecules are important in the onset and modulation of cellular immune responses. Studies on the intracellular transport of these molecules has provided insight into the way pathogens are processed and presented at the cell surface and may result in future immunological intervention strategies. Recent reviews have extensively described structural properties and early events in the biosynthesis of MHC class II (1‐3). In this review, the focus will be on the function of the dedicated chaperone proteins Ii, DM and DO in the class II assembly, transport and peptide loading as well on proteins involved in transport steps late in the intracellular transport of MHC class II.
Journal of Orthopaedic Research | 2012
Lucas A. Smolders; Björn P. Meij; Frank M. Riemers; Ruud Licht; Richard Wubbolts; Douwe van den Heuvel; Guy C. M. Grinwis; Hans Vernooij; H.A.W. Hazewinkel; Louis C. Penning; Marianna A. Tryfonidou
The notochordal cell (NC) of the nucleus pulposus (NP) is considered a potential NP progenitor cell, and early intervertebral disk (IVD) degeneration involves replacement of NCs by chondrocyte‐like cells (CLCs). Wnt/β‐catenin signaling plays a crucial role in maintaining the notochordal fate during embryogenesis, but is also involved in tissue degeneration and regeneration. The canine species, which can be subdivided into non‐chondrodystrophic and chondrodystrophic breeds, is characterized by differential maintenance of the NC: in non‐chondrodystrophic dogs, the NC remains the predominant cell type during the majority of life, with IVD degeneration only occurring at old age; conversely, in chondrodystrophic dogs the NC is lost early in life, with concurrent degeneration of all IVDs. This study investigated Wnt/β‐catenin signaling in the healthy, NC‐rich NP and early degenerated, CLC‐rich NP of both breed types by immunohistochemistry of β‐catenin and relative gene expression of brachyury and cytokeratin 8 (notochordal markers) and Wnt targets axin2, cyclin D1, and c‐myc. Both NCs and CLCs showed nuclear and cytoplasmic β‐catenin protein expression and axin2 gene expression, but β‐catenin signal intensity and Wnt target gene expression were higher in the CLC‐rich NP. Primary NCs in monolayer culture (normoxic conditions) showed Wnt/β‐catenin signaling comparable to the in vivo situation, with increased cyclin D1 and c‐myc gene expression. In conclusion, Wnt/β‐catenin signaling activity in the NC within the NC‐rich NP and in culture supports the role of this cell as a potential progenitor cell; increased Wnt/β‐catenin signaling activity in early IVD degeneration may be a reflection of its dual role.