Rick B. Vega
Discovery Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rick B. Vega.
Trends in Endocrinology and Metabolism | 2012
Richard C. Scarpulla; Rick B. Vega; Daniel P. Kelly
Gene regulatory factors encoded by the nuclear genome are essential for mitochondrial biogenesis and function. Some of these factors act exclusively within the mitochondria to regulate the control of mitochondrial transcription, translation, and other functions. Others govern the expression of nuclear genes required for mitochondrial metabolism and organelle biogenesis. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators play a major role in transducing and integrating physiological signals governing metabolism, differentiation, and cell growth to the transcriptional machinery controlling mitochondrial functional capacity. Thus, the PGC-1 coactivators serve as a central component of the transcriptional regulatory circuitry that coordinately controls the energy-generating functions of mitochondria in accordance with the metabolic demands imposed by changing physiological conditions, senescence, and disease.
Circulation | 2016
Gregory Aubert; Ola J. Martin; Julie L. Horton; Ling Lai; Rick B. Vega; Teresa C. Leone; Timothy R. Koves; Stephen J. Gardell; Marcus Krüger; Charles L. Hoppel; E. Douglas Lewandowski; Peter A. Crawford; Deborah M. Muoio; Daniel P. Kelly
Background— Significant evidence indicates that the failing heart is energy starved. During the development of heart failure, the capacity of the heart to utilize fatty acids, the chief fuel, is diminished. Identification of alternate pathways for myocardial fuel oxidation could unveil novel strategies to treat heart failure. Methods and Results— Quantitative mitochondrial proteomics was used to identify energy metabolic derangements that occur during the development of cardiac hypertrophy and heart failure in well-defined mouse models. As expected, the amounts of proteins involved in fatty acid utilization were downregulated in myocardial samples from the failing heart. Conversely, expression of &bgr;-hydroxybutyrate dehydrogenase 1, a key enzyme in the ketone oxidation pathway, was increased in the heart failure samples. Studies of relative oxidation in an isolated heart preparation using ex vivo nuclear magnetic resonance combined with targeted quantitative myocardial metabolomic profiling using mass spectrometry revealed that the hypertrophied and failing heart shifts to oxidizing ketone bodies as a fuel source in the context of reduced capacity to oxidize fatty acids. Distinct myocardial metabolomic signatures of ketone oxidation were identified. Conclusions— These results indicate that the hypertrophied and failing heart shifts to ketone bodies as a significant fuel source for oxidative ATP production. Specific metabolite biosignatures of in vivo cardiac ketone utilization were identified. Future studies aimed at determining whether this fuel shift is adaptive or maladaptive could unveil new therapeutic strategies for heart failure.
Journal of Clinical Investigation | 2013
Zhenji Gan; John Rumsey; Bethany C. Hazen; Ling Lai; Teresa C. Leone; Rick B. Vega; Hui Xie; Kevin E. Conley; Johan Auwerx; Steven R. Smith; Eric N. Olson; Anastasia Kralli; Daniel P. Kelly
The mechanisms involved in the coordinate regulation of the metabolic and structural programs controlling muscle fitness and endurance are unknown. Recently, the nuclear receptor PPARβ/δ was shown to activate muscle endurance programs in transgenic mice. In contrast, muscle-specific transgenic overexpression of the related nuclear receptor, PPARα, results in reduced capacity for endurance exercise. We took advantage of the divergent actions of PPARβ/δ and PPARα to explore the downstream regulatory circuitry that orchestrates the programs linking muscle fiber type with energy metabolism. Our results indicate that, in addition to the well-established role in transcriptional control of muscle metabolic genes, PPARβ/δ and PPARα participate in programs that exert opposing actions upon the type I fiber program through a distinct muscle microRNA (miRNA) network, dependent on the actions of another nuclear receptor, estrogen-related receptor γ (ERRγ). Gain-of-function and loss-of-function strategies in mice, together with assessment of muscle biopsies from humans, demonstrated that type I muscle fiber proportion is increased via the stimulatory actions of ERRγ on the expression of miR-499 and miR-208b. This nuclear receptor/miRNA regulatory circuit shows promise for the identification of therapeutic targets aimed at maintaining muscle fitness in a variety of chronic disease states, such as obesity, skeletal myopathies, and heart failure.
Genes & Development | 2015
Gerald W. Dorn; Rick B. Vega; Daniel P. Kelly
The mitochondrion is a complex organelle that serves essential roles in energy transduction, ATP production, and a myriad of cellular signaling events. A finely tuned regulatory network orchestrates the biogenesis, maintenance, and turnover of mitochondria. The high-capacity mitochondrial system in the heart is regulated in a dynamic way to generate and consume enormous amounts of ATP in order to support the constant pumping function in the context of changing energy demands. This review describes the regulatory circuitry and downstream events involved in mitochondrial biogenesis and its coordination with mitochondrial dynamics in developing and diseased hearts.
Circulation-heart Failure | 2014
Ling Lai; Teresa C. Leone; Mark P. Keller; Ola J. Martin; Aimee Teo Broman; Jessica Nigro; Kapil Kapoor; Timothy R. Koves; Robert D. Stevens; Olga Ilkayeva; Rick B. Vega; Alan D. Attie; Deborah M. Muoio; Daniel P. Kelly
Background—An unbiased systems approach was used to define energy metabolic events that occur during the pathological cardiac remodeling en route to heart failure (HF). Methods and Results—Combined myocardial transcriptomic and metabolomic profiling were conducted in a well-defined mouse model of HF that allows comparative assessment of compensated and decompensated (HF) forms of cardiac hypertrophy because of pressure overload. The pressure overload data sets were also compared with the myocardial transcriptome and metabolome for an adaptive (physiological) form of cardiac hypertrophy because of endurance exercise training. Comparative analysis of the data sets led to the following conclusions: (1) expression of most genes involved in mitochondrial energy transduction were not significantly changed in the hypertrophied or failing heart, with the notable exception of a progressive downregulation of transcripts encoding proteins and enzymes involved in myocyte fatty acid transport and oxidation during the development of HF; (2) tissue metabolite profiles were more broadly regulated than corresponding metabolic gene regulatory changes, suggesting significant regulation at the post-transcriptional level; (3) metabolomic signatures distinguished pathological and physiological forms of cardiac hypertrophy and served as robust markers for the onset of HF; and (4) the pattern of metabolite derangements in the failing heart suggests bottlenecks of carbon substrate flux into the Krebs cycle. Conclusions—Mitochondrial energy metabolic derangements that occur during the early development of pressure overload–induced HF involve both transcriptional and post-transcriptional events. A subset of the myocardial metabolomic profile robustly distinguished pathological and physiological cardiac remodeling.
Journal of Biological Chemistry | 2014
Ling Lai; Miao Wang; Ola J. Martin; Teresa C. Leone; Rick B. Vega; Xianlin Han; Daniel P. Kelly
Background: Peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1) α and β are transcriptional regulators of mitochondrial metabolism. Results: Loss of PGC-1 coactivators in mouse heart causes a defect in phospholipid biosynthesis resulting in mitochondrial ultrastructural abnormalities. Conclusion: PGC-1 coactivators coordinately regulate mitochondrial metabolism and structure. Significance: The mitochondrial phenotype of PGC-1-deficient mice resembles that of humans with genetic defects in mitochondrial phospholipid biosynthesis (Barth syndrome). The energy demands of the adult mammalian heart are met largely by ATP generated via oxidation of fatty acids in a high capacity mitochondrial system. Peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)-α and -β serve as inducible transcriptional coregulators of genes involved in mitochondrial biogenesis and metabolism. Whether PGC-1 plays a role in the regulation of mitochondrial structure is unknown. In this study, mice with combined deficiency of PGC-1α and PGC-1β (PGC-1αβ−/−) in adult heart were analyzed. PGC-1αβ−/− hearts exhibited a distinctive mitochondrial cristae-stacking abnormality suggestive of a phospholipid abnormality as has been described in humans with genetic defects in cardiolipin (CL) synthesis (Barth syndrome). A subset of molecular species, containing n-3 polyunsaturated species in the CL, phosphatidylcholine, and phosphatidylethanolamine profiles, was reduced in PGC-1αβ-deficient hearts. Gene expression profiling of PGC-1αβ−/− hearts revealed reduced expression of the gene encoding CDP-diacylglycerol synthase 1 (Cds1), an enzyme that catalyzes the proximal step in CL biosynthesis. Cds1 gene promoter-reporter cotransfection experiments and chromatin immunoprecipitation studies demonstrated that PGC-1α coregulates estrogen-related receptors to activate the transcription of the Cds1 gene. We conclude that the PGC-1/estrogen-related receptor axis coordinately regulates metabolic and membrane structural programs relevant to the maintenance of high capacity mitochondrial function in heart.
Biochimica et Biophysica Acta | 2013
Gregory Aubert; Rick B. Vega; Daniel P. Kelly
The heart is an omnivore organ that requires constant energy production to match its functional demands. In the adult heart, adenosine-5-triphosphate (ATP) production occurs mainly through mitochondrial fatty acid and glucose oxidation. The heart must constantly adapt its energy production in response to changes in substrate supply and work demands across diverse physiologic and pathophysiologic conditions. The cardiac myocyte maintains a high level of mitochondrial ATP production through a complex transcriptional regulatory network that is orchestrated by the members of the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family. There is increasing evidence that during the development of cardiac hypertrophy and in the failing heart, the activity of this network, including PGC-1, is altered. This review summarizes our current understanding of the perturbations in the gene regulatory pathways that occur during the development of heart failure. An appreciation of the role this regulatory circuitry serves in the regulation of cardiac energy metabolism may unveil novel therapeutic targets aimed at the metabolic disturbances that presage heart failure. This article is part of a Special Issue entitled:Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Circulation Research | 2015
Rick B. Vega; Julie L. Horton; Daniel P. Kelly
The ultrastructure of the cardiac myocyte is remarkable for the high density of mitochondria tightly packed between sarcomeres. This structural organization is designed to provide energy in the form of ATP to fuel normal pump function of the heart. A complex system comprised of regulatory factors and energy metabolic machinery, encoded by both mitochondrial and nuclear genomes, is required for the coordinate control of cardiac mitochondrial biogenesis, maturation, and high-capacity function. This process involves the action of a transcriptional regulatory network that builds and maintains the mitochondrial genome and drives the expression of the energy transduction machinery. This finely tuned system is responsive to developmental and physiological cues, as well as changes in fuel substrate availability. Deficiency of components critical for mitochondrial energy production frequently manifests as a cardiomyopathic phenotype, underscoring the requirement to maintain high respiration rates in the heart. Although a precise causative role is not clear, there is increasing evidence that perturbations in this regulatory system occur in the hypertrophied and failing heart. This review summarizes current knowledge and highlights recent advances in our understanding of the transcriptional regulatory factors and signaling networks that serve to regulate mitochondrial biogenesis and function in the mammalian heart.
Cell Metabolism | 2017
Rick B. Vega; John P. Konhilas; Daniel P. Kelly; Leslie A. Leinwand
Exercise elicits coordinated multi-organ responses including skeletal muscle, vasculature, heart, and lung. In the short term, the output of the heart increases to meet the demand of strenuous exercise. Long-term exercise instigates remodeling of the heart including growth and adaptive molecular and cellular re-programming. Signaling pathways such as the insulin-like growth factor 1/PI3K/Akt pathway mediate many of these responses. Exercise-induced, or physiologic, cardiac growth contrasts with growth elicited by pathological stimuli such as hypertension. Comparing the molecular and cellular underpinnings of physiologic and pathologic cardiac growth has unveiled phenotype-specific signaling pathways and transcriptional regulatory programs. Studies suggest that exercise pathways likely antagonize pathological pathways, and exercise training is often recommended for patients with chronic stable heart failure or following myocardial infarction. Herein, we summarize the current understanding of the structural and functional cardiac responses to exercise as well as signaling pathways and downstream effector molecules responsible for these adaptations.
Embo Molecular Medicine | 2016
Jing Liu; Xijun Liang; Danxia Zhou; Ling Lai; Liwei Xiao; Lin Liu; Tingting Fu; Yan Kong; Qian Zhou; Rick B. Vega; Min‐Sheng Zhu; Daniel P. Kelly; Xiang Gao; Zhenji Gan
Upon adaption of skeletal muscle to physiological and pathophysiological stimuli, muscle fiber type and mitochondrial function are coordinately regulated. Recent studies have identified pathways involved in control of contractile proteins of oxidative‐type fibers. However, the mechanism for coupling of mitochondrial function to the muscle contractile machinery during fiber type transition remains unknown. Here, we show that the expression of the genes encoding type I myosins, Myh7/Myh7b and their intronic miR‐208b/miR‐499, parallels mitochondrial function during fiber type transitions. Using in vivo approaches in mice, we found that miR‐499 drives a PGC‐1α‐dependent mitochondrial oxidative metabolism program to match shifts in slow‐twitch muscle fiber composition. Mechanistically, miR‐499 directly targets Fnip1, an AMP‐activated protein kinase (AMPK)‐interacting protein that negatively regulates AMPK, a known activator of PGC‐1α. Inhibition of Fnip1 reactivated AMPK/PGC‐1α signaling and mitochondrial function in myocytes. Restoration of the expression of miR‐499 in the mdx mouse model of Duchenne muscular dystrophy (DMD) reduced the severity of DMD. Thus, we have identified a miR‐499/Fnip1/AMPK circuit that can serve as a mechanism to couple muscle fiber type and mitochondrial function.