Rick E. Bernardi
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rick E. Bernardi.
Brain Structure & Function | 2017
Dragana Filipović; Nevena Todorović; Rick E. Bernardi; Peter Gass
Various stressors may disrupt the redox homeostasis of an organism by causing oxidative and nitrosative stress that may activate stressor-specific pathways and provoke specific responses. Chronic social isolation (CSIS) represents a mild chronic stress that evokes a variety of neurobehavioral changes in rats similar to those observed in people with psychiatric disorders, including depression. Most rodent studies have focused on the effect of social isolation during weaning or adolescence, while its effect in adult rats has not been extensively examined. In this review, we discuss the current knowledge regarding the involvement of oxidative/nitrosative stress pathways in the prefrontal cortex and hippocampus of adult male rats exposed to CSIS, focusing on hypothalamic-pituitary-adrenocortical (HPA) axis activity, behavior parameters, antioxidative defense systems, stress signaling mediated by nuclear factor-kappa B (NF-κB), and mitochondria-related proapoptotic signaling. Although increased concentrations of corticosterone (CORT) have been shown to induce oxidative and nitrosative stress, we suggest a mechanism underlying the glucocorticoid paradox whereby a state of oxidative/nitrosative stress may exist under basal CORT levels. This review also highlights the differential susceptibility of prefrontal cortex and hippocampus to oxidative stress following CSIS and suggests a possible cellular pathway of stress tolerance that preserves the hippocampus from molecular damage and apoptosis. The differential regulation of the transcriptional factor NF-κB, and the enzymes inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) following CSIS may be one functional difference between the response of the prefrontal cortex and hippocampus, thus identifying potentially relevant targets for antidepressant treatment.
European Journal of Pharmaceutical Sciences | 2014
Jelena Zlatković; Nevena Todorović; Nada Tomanovic; Maja Bošković; Snežana Djordjević; Tamara Lazarević-Pašti; Rick E. Bernardi; Aleksandra Djurdjević; Dragana Filipović
Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups resulted in liver injury. These data suggest that clozapine appears to have a higher potential to induce liver toxicity than fluoxetine.
The Journal of Neuroscience | 2014
Briac Halbout; Rick E. Bernardi; Anita C. Hansson; Rainer Spanagel
The incubation of cocaine craving describes the time-dependent augmentation of cue-induced cocaine seeking during withdrawal from prolonged cocaine self-administration and requires time-dependent changes in neuroplasticity at the level of glutamatergic synapses in the nucleus accumbens (NAc). In contrast to most studies that use multiple cocaine-cue conditioning sessions, the present study tested mice with limited cocaine experience (i.e., a single conditioning session) in the incubation of cue-mediated cocaine seeking and its associated changes in the glutamate system. Mice that self-administered cocaine during a single session exhibited a time-dependent increase in their response for the drug-associated cue as compared to mice that self-administered saline. This behavior was associated with changes in AMPA and NMDA receptor binding characteristics. Furthermore, Group I metabotropic glutamate receptor (mGluR1) mRNA levels were altered in several brain regions, including the NAc. Because of the pivotal role of mGluR1 in the control of cocaine-induced plasticity, we investigated the role of mGluR1 in the formation of drug cue-mediated cocaine seeking. After prolonged withdrawal, mice in which an mGluR1 antagonist was administered following cocaine self-administration displayed increased cocaine seeking compared to vehicle-treated mice. These results suggest that limited cocaine experience is sufficient to induce neurobiological changes that enable an initially neutral cue to acquire motivational value that increases over time, an effect that likely involves glutamate signaling through mGluR1.
Drug and Alcohol Dependence | 2013
Rick E. Bernardi; Rainer Spanagel
BACKGROUND Clock genes have been demonstrated to play a role in behavioral responses to a variety of drugs of abuse, including cocaine, amphetamine, morphine, and ethanol. However, no studies to date have examined the role of Clock genes on nicotine-mediated behaviors. We examined the involvement of Clock, one of several Clock genes, on the effects of nicotine by examining mice with the ClockΔ19 mutation in behaviors commonly used to assess drug effects in rodents. METHODS We first measured the locomotor effects of nicotine in mutants and wild type mice in response to repeated nicotine injections (0.175 mg/kg, IP). To assess the secondary properties of nicotine, we measured the ability of nicotine (0.175 mg/kg, IP) to induce a conditioned place preference. Finally, we measured the primary reinforcing properties of nicotine at two doses (0.01 and 0.03 mg/kg/infusion, IV) using the self-administration paradigm. RESULTS Mutant mice demonstrated no difference in magnitude of the sensitized response to nicotine as compared to wild-type controls. In the conditioned place preference paradigm, mutant and wild-type mice demonstrated a similar preference for a nicotine-paired environment. And finally, mutant and wild-type mice demonstrated a similar acquisition of nicotine self-administration, as indicated by the number of responses on a nicotine-paired lever and the number of nicotine reinforcers achieved during sessions. CONCLUSIONS The ClockΔ19 mutation appears to have no effect on the reinforcing properties of nicotine, in contrast to its demonstrated role in cocaine reinforcement. Further studies are needed to determine the effect of other Clock genes on nicotine reinforcement.
eLife | 2016
Alessandro Papale; Ilaria Morella; Marzia Indrigo; Rick E. Bernardi; Livia Marrone; Francesca Marchisella; Andrea Brancale; Rainer Spanagel; Riccardo Brambilla; Stefania Fasano
Ras-ERK signalling in the brain plays a central role in drug addiction. However, to date, no clinically relevant inhibitor of this cascade has been tested in experimental models of addiction, a necessary step toward clinical trials. We designed two new cell-penetrating peptides - RB1 and RB3 - that penetrate the brain and, in the micromolar range, inhibit phosphorylation of ERK, histone H3 and S6 ribosomal protein in striatal slices. Furthermore, a screening of small therapeutics currently in clinical trials for cancer therapy revealed PD325901 as a brain-penetrating drug that blocks ERK signalling in the nanomolar range. All three compounds have an inhibitory effect on cocaine-induced ERK activation and reward in mice. In particular, PD325901 persistently blocks cocaine-induced place preference and accelerates extinction following cocaine self-administration. Thus, clinically relevant, systemically administered drugs that attenuate Ras-ERK signalling in the brain may be valuable tools for the treatment of cocaine addiction. DOI: http://dx.doi.org/10.7554/eLife.17111.001
Nicotine & Tobacco Research | 2014
Rick E. Bernardi; Stefanie Uhrig; Rainer Spanagel; Anita C. Hansson
INTRODUCTION L-type calcium channel (LTCC) activity in the brain is mediated by 2 subtypes, Ca(v)1.2 and Ca(v)1.3. The individual contributions of these LTCC subtypes to the long-term pharmacological and behavioral effects of nicotine are unknown. METHODS Using quantitative in situ hybridization, we examined expression levels of Ca(v)1.2 and Ca(v)1.3 in forebrain regions of mice treated with nicotine (0.175 mg/kg) or saline for 1 or 14 days and sacrificed 24 hr or 7 days following the last injection. Additionally, we treated mice with nicotine for 14 days and then administered the nonspecific LTCC antagonist nifedipine twice daily during a 7-day abstinence period prior to testing for nicotine sensitization to determine the effect of LTCC blockade on sensitization. RESULTS Ca(v)1.2 mRNA was unaffected 24 hr following a single nicotine exposure, whereas Ca(v)1.3 mRNA was upregulated in several brain regions. Following 14 days of nicotine treatment and 24 hr of abstinence, Ca(v)1.2 mRNA was downregulated throughout the areas examined, whereas Ca(v)1.3 mRNA had mostly returned to control values. Following 7 days of abstinence, a strong upregulation of Ca(v)1.2 transcripts was observed, whereas Ca(v)1.3 mRNA was largely unaffected. In our sensitization study, nifedipine administered during nicotine abstinence impaired subsequent nicotine sensitization. CONCLUSIONS Our data suggest a differential involvement of Ca(v)1.2 and Ca(v)1.3 in nicotine-related processes. Ca(v)1.3 seems to be involved primarily during early exposure to nicotine. Ca(v)1.2 appears to play a role in the long-term molecular and behavioral changes that occur following chronic nicotine and abstinence. Nifedipine may counteract those nicotine-induced alterations in LTCC activity to impair nicotine sensitization.
Behavioural Brain Research | 2014
Rick E. Bernardi; Rainer Spanagel
Not all humans become addicted to drugs of abuse following casual use. Thus, it is important to identify factors that may contribute to subsequent drug responding. Previous studies have identified characteristics such as novelty-seeking, impulsivity, and anxiety as factors involved in the progression to drug dependence. The current experiment investigated basal locomotor activity in C57Bl/6N mice as a potential predictor of subsequent nicotine responses. We examined the ability of differences in basal locomotor activity to predict the acute and sensitized response to nicotine, as well as nicotine conditioned reinforcement. A median split was used to distinguish between low and high responders with regard to basal locomotor activity in mice. We then measured the acute response to nicotine (0.5mg/kg IP) in these mice, followed by measures of conditioned place preference (CPP; 0.5mg/kg IP) and locomotor sensitization (0.5mg/kg IP), to determine whether basal locomotion is predictive of subsequent responding to nicotine. High, but not low, basal activity was found to be a predictor of both the acute and sensitized response to nicotine. Interestingly, only mice classified as having low basal activity demonstrated a significant CPP, suggesting that pre-exposure to nicotine differentially affects conditioned reinforcement on the basis of initial activity level. Basal locomotor activity may be an efficient measure of subsequent locomotor responding to nicotine, but only in animals classified as having high basal activity. However, animals with low basal locomotor activity may be more susceptible to the reinforcing properties of nicotine.
Neuropsychopharmacology | 2017
Stefanie Uhrig; David Vandael; Andrea Marcantoni; Nina Dedic; Ainhoa Bilbao; Miriam A. Vogt; Natalie Hirth; Laura Broccoli; Rick E. Bernardi; Kai Schönig; Peter Gass; Dusan Bartsch; Rainer Spanagel; Jan M. Deussing; Wolfgang H. Sommer; Emilio Carbone; Anita C. Hansson
It has previously been shown that the inhibition of L-type calcium channels (LTCCs) decreases alcohol consumption, although the contribution of the central LTCC subtypes Cav1.2 and Cav1.3 remains unknown. Here, we determined changes in Cav1.2 (Cacna1c) and Cav1.3 (Cacna1d) mRNA and protein expression in alcohol-dependent rats during protracted abstinence and naive controls using in situ hybridization and western blot analysis. Functional validation was obtained by electrophysiological recordings of calcium currents in dissociated hippocampal pyramidal neurons. We then measured alcohol self-administration and cue-induced reinstatement of alcohol seeking in dependent and nondependent rats after intracerebroventricular (i.c.v.) injection of the LTCC antagonist verapamil, as well as in mice with an inducible knockout (KO) of Cav1.2 in Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα)-expressing neurons. Our results show that Cacna1c mRNA concentration was increased in the amygdala and hippocampus of alcohol-dependent rats after 21 days of abstinence, with no changes in Cacna1d mRNA. This was associated with increased Cav1.2 protein concentration and L-type calcium current amplitudes. Further analysis of Cacna1c mRNA in the CA1, basolateral amygdala (BLA), and central amygdala (CeA) revealed a dynamic regulation over time during the development of alcohol dependence. The inhibition of central LTCCs via i.c.v. administration of verapamil prevented cue-induced reinstatement of alcohol seeking in alcohol-dependent rats. Further studies in conditional Cav1.2-KO mice showed a lack of dependence-induced increase of alcohol-seeking behavior. Together, our data indicate that central Cav1.2 channels, rather than Cav1.3, mediate alcohol-seeking behavior. This finding may be of interest for the development of new antirelapse medications.
Drug and Alcohol Dependence | 2015
Rick E. Bernardi; Laura Broccoli; Rainer Spanagel; Anita C. Hansson
BACKGROUND Studies in humans and rodents have demonstrated under certain conditions some reinforcing properties of modafinil, a drug being examined clinically for its potential to treat psychostimulant abuse. However, the majority of rodent studies examining the abuse potential of modafinil have used high doses that may not be clinically relevant. In fact, recent work has indicated that doses similar to those administered to humans are not reinforcing in mice. METHODS The current study examined sex differences in the ability of low-dose modafinil (0.75mg/kg, IP) to induce a conditioned place preference in mice, and assessed sex-dependent alterations in dopamine D1, D2 and DAT binding sites in reward-related regions in naïve and modafinil-treated mice. RESULTS Low-dose modafinil failed to induce a conditioned place preference in male mice, while female mice demonstrated a significant modafinil place preference. Several dopamine binding differences were also detected in naïve and modafinil-treated mice, including sex differences in D1 and D2 availability in reward-related regions, and are discussed in relation to sex-dependent differences in the reinforcing effects of modafinil and psychostimulants in general. CONCLUSIONS These findings implicate sex differences in the reinforcing properties of modafinil in mice, and indicate that clinical evaluation of the sex dependence of the reinforcing properties of modafinil in humans is warranted.
Frontiers in Behavioral Neuroscience | 2017
Rick E. Bernardi; Laura Broccoli; Natalie Hirth; Nicholas J. Justice; Jan M. Deussing; Anita C. Hansson; Rainer Spanagel
The ability of many drugs of abuse, including cocaine, to mediate reinforcement and drug-seeking behaviors is in part mediated by the corticotropin-releasing hormone (CRH) system, in which CRH exerts its effects partly via the CRH receptor subtype 1 (CRHR1) in extra-hypothalamic areas. In fact, CRHR1 expressed in regions of the mesolimbic dopamine (DA) system have been demonstrated to modify cocaine-induced DA release and alter cocaine-mediated behaviors. Here we examined the role of neuronal selectivity of CRHR1 within the mesolimbic system on cocaine-induced behaviors. First we used a transgenic mouse line expressing GFP under the control of the Crhr1 promoter for double fluorescence immunohistochemistry to demonstrate the cellular location of CRHR1 in both dopaminergic and D1 dopaminoceptive neurons. We then studied cocaine sensitization, self-administration, and reinstatement in inducible CRHR1 knockouts using the CreERT2/loxP in either dopamine transporter (DAT)-containing neurons (DAT-Crhr1) or dopamine receptor 1 (D1)-containing neurons (D1-Crhr1). For sensitization testing, mice received five daily injections of cocaine (15 mg/kg IP). For self-administration, mice received eight daily 2 h cocaine (0.5 mg/kg per infusion) self-administration sessions followed by extinction and reinstatement testing. There were no differences in the acute or sensitized locomotor response to cocaine in DAT-Crhr1 or D1-Crhr1 mice and their respective controls. Furthermore, both DAT-Crhr1 and D1-Crhr1 mice reliably self-administered cocaine at the level of controls. However, DAT-Crhr1 mice demonstrated a significant increase in cue-induced reinstatement relative to controls, whereas D1-Crhr1 mice demonstrated a significant decrease in cue-induced reinstatement relative to controls. These data demonstrate the involvement of CRHR1 in cue-induced reinstatement following cocaine self-administration, and implicate a bi-directional role of CRHR1 for cocaine craving.