Rick L. Barr
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rick L. Barr.
Circulation | 1996
James McCormack; Rick L. Barr; Andrew Wolff; Gary D. Lopaschuk
BACKGROUND Ranolazine is a novel antianginal agent that may reduce symptoms without affecting hemodynamics and has shown cardiac antiischemic effects in in vivo and in vitro models. In one study it increased active pyruvate dehydrogenase (PDHa). Other agents that increase PDHa and so increase glucose and decrease fatty acid (FA) oxidation are beneficial in ischemic-reperfused hearts. Effects of ranolazine on glucose and palmitate oxidation and glycolysis were assessed in isolated rat hearts. METHODS AND RESULTS Working hearts were perfused with Krebs-Henseleit buffer plus 3% albumin under normoxic conditions and on reperfusion after 30-minute no-flow ischemia and under conditions designed to give either low [low (Ca) (1.25 mmol/L), high [FA] (1.2 mmol/L palmitate; with/without insulin] or high (2.5 mmol/L Ca, 0.4 mmol/L palmitate; with/without pacing) glucose oxidation rates; Langendorff-perfused hearts (high Ca, low FA) were subjected to varying degrees of low-flow ischemia. Glycolysis and glucose oxidation were measured with the use of [5-3H/U-14C]-glucose and FA oxidation with the use of [1-14C]- or [9,10-3H]-palmitate. In working hearts, 10 micromol/L ranolazine significantly increased glucose oxidation 1.5-fold to 3-fold under conditions in which the contribution of glucose to overall ATP production was low (low Ca, high FA, with insulin), high (high Ca, low Fa, with pacing), or intermediate. In some cases, reductions in FA oxidation were seen. No substantial changes in glycolysis were noted with/without ranolazine; rates were approximately 10-fold glucose oxidation rates, suggesting that pyruvate supply was not limiting. Insulin increased basal glucose oxidation and glycolysis but did not alter ranolazine responses. In normoxic Langendorff hearts (high Ca, low FA; 15 mL/min), all basal rates were lower compared with working hearts, but 10 micromol/L ranolazine similarly increased glucose oxidation; ranolazine also significantly increased it during flow reduction to 7, 3, and 0.5 mL/min. Ranolazine did not affect baseline contractile or hemodynamic parameters or O2 use. In reperfused ischemic working hearts, ranolazine significantly improved functional outcome, which was associated with significant increases in glucose oxidation, a reversal of the increased FA oxidation seen in control reperfusions (versus preischemic), and a smaller but significant increase in glycolysis. CONCLUSIONS Beneficial effects of ranolazine in cardiac ischemia/reperfusion may be due, at least in part, to a stimulation of glucose oxidation and a reduction in FA oxidation, allowing improved ATP/O2 and reduction in the buildup of H+, lactate, and harmful fatty acyl intermediates.
Circulation Research | 2004
Jason R. B. Dyck; Jie-Fei Cheng; William C. Stanley; Rick L. Barr; Margaret P. Chandler; Steven Brown; David Wallace; Thomas Arrhenius; Charles Harmon; Guang Yang; Alex M. Nadzan; Gary D. Lopaschuk
Abnormally high rates of fatty acid oxidation and low rates of glucose oxidation are important contributors to the severity of ischemic heart disease. Malonyl coenzyme A (CoA) regulates fatty acid oxidation by inhibiting mitochondrial uptake of fatty acids. Malonyl CoA decarboxylase (MCD) is involved in the decarboxylation of malonyl CoA to acetyl CoA. Therefore, inhibition of MCD may decrease fatty acid oxidation and protect the ischemic heart, secondary to increasing malonyl CoA levels. Ex vivo working rat hearts aerobically perfused in the presence of newly developed MCD inhibitors showed an increase in malonyl CoA levels, which was accompanied by both a significant decrease in fatty acid oxidation rates and an increase in glucose oxidation rates compared with controls. Using a model of demand-induced ischemia in pigs, MCD inhibition significantly increased glucose oxidation rates and reduced lactate production compared with vehicle-treated hearts, which was accompanied by a significant increase in cardiac work compared with controls. In a more severe rat heart global ischemia/reperfusion model, glucose oxidation was significantly increased and cardiac function was significantly improved during reperfusion in hearts treated with the MCD inhibitor compared with controls. Together, our data show that MCD inhibitors, which increase myocardial malonyl CoA levels, decrease fatty acid oxidation and accelerate glucose oxidation in both ex vivo rat hearts and in vivo pig hearts. This switch in energy substrate preference improves cardiac function during and after ischemia, suggesting that pharmacological inhibition of MCD may be a novel approach to treating ischemic heart disease.
Circulation Research | 2003
Gary D. Lopaschuk; Rick L. Barr; Panakkezhum D. Thomas; Jason R. B. Dyck
Abstract— High rates of fatty acid oxidation in the heart and subsequent inhibition of glucose oxidation contributes to the severity of myocardial ischemia. These adverse effects of fatty acids can be overcome by stimulating glucose oxidation, either directly or secondary to an inhibition of fatty acid oxidation. We recently demonstrated that trimetazidine stimulates glucose oxidation in the heart secondary to inhibition of fatty acid oxidation. This inhibition of fatty acid oxidation was attributed to an inhibition of mitochondrial long-chain 3-ketoacyl CoA thiolase (LC 3-KAT), an enzyme of fatty acid &bgr;-oxidation. However, the accompanying Research Commentary of MacInnes et al suggests that trimetazidine does not inhibit cardiac LC 3-KAT. This discrepancy with our data can be attributed to the reversible competitive nature of trimetazidine inhibition of LC 3-KAT. In the presence of 2.5 &mgr;mol/L 3-keto-hexadecanoyl CoA (KHCoA), trimetazidine resulted in a 50% inhibition of LC-3-KAT activity. However, the inhibition of LC 3-KAT could be completely reversed by increasing substrate (3-keto-hexadecanoyl CoA, KHCoA) concentrations to 15 &mgr;mol/L even at high concentrations of trimetazidine (100 &mgr;mol/L). The study of MacInnes et al was performed using concentrations of 3K-HCoA in excess of 16 &mgr;mol/L, a concentration that would completely overcome 100 &mgr;mol/L trimetazidine inhibition of LC 3-KAT. Therefore, the lack of inhibition of LC 3-KAT by trimetazidine in the MacInnes et al study can easily be explained by the high concentration of KHCoA substrate used in their experiments. In isolated working hearts perfused with high levels of fatty acids, we found that trimetazidine (100 &mgr;mol/L) significantly improves functional recovery of hearts subjected to a 30-minute period of global no-flow ischemia. This occurred in the absence of changes in oxygen consumption resulting in an improved increase in cardiac efficiency. Combined with our previous studies, we conclude that trimetazidine inhibition of LC 3-KAT decreases fatty acid oxidation and stimulates glucose oxidation, resulting in an improvement in cardiac function and efficiency after ischemia. The full text of this article is available online at http://www.circresaha.org.
American Journal of Physiology-heart and Circulatory Physiology | 1998
Jason R. B. Dyck; Amy J. Barr; Rick L. Barr; Pappachan E. Kolattukudy; Gary D. Lopaschuk
Malonyl-CoA is a potent inhibitor of fatty acid uptake into the mitochondria. Although the synthesis of malonyl-CoA in the heart by acetyl-CoA carboxylase (ACC) has been well characterized, no information is available as to how malonyl-CoA is degraded. We demonstrate that malonyl-CoA decarboxylase (MCD) activity is present in the heart. Partial purification revealed a protein of ∼50 kDa. The role of MCD in regulating fatty acid oxidation was also studied using isolated, perfused hearts from newborn rabbits and adult rats. Fatty acid oxidation in rabbit hearts increased dramatically between 1 day and 7 days after birth, which was accompanied by a decrease in both ACC activity and malonyl-CoA levels and a parallel increase in MCD activity. When adult rat hearts were aerobically reperfused after a 30-min period of no-flow ischemia, levels of malonyl-CoA decreased dramatically, which was accompanied by a decrease in ACC activity, a maintained MCD activity, and an increase in fatty acid oxidation rates. Taken together, our data suggest that the heart has an active MCD that has an important role in regulating fatty acid oxidation rates.
Biochemical Journal | 2000
Jason R. B. Dyck; Luc G. Berthiaume; Panakkezhum D. Thomas; Paul F. Kantor; Amy J. Barr; Rick L. Barr; Dyal Singh; Teresa A. Hopkins; Nicolas Voilley; Marc Prentki; Gary D. Lopaschuk
In the liver, malonyl-CoA is central to many cellular processes, including both fatty acid biosynthesis and oxidation. Malonyl-CoA decarboxylase (MCD) is involved in the control of cellular malonyl-CoA levels, and functions to decarboxylate malonyl-CoA to acetyl-CoA. MCD may play an essential role in regulating energy utilization in the liver by regulating malonyl-CoA levels in response to various nutritional or pathological states. The purpose of the present study was to investigate the role of liver MCD in the regulation of fatty acid oxidation in situations where lipid metabolism is altered. A single MCD enzyme of molecular mass 50.7 kDa was purified from rat liver using a sequential column chromatography procedure and the cDNA was subsequently cloned and sequenced. The liver MCD cDNA was identical to rat pancreatic beta-cell MCD cDNA, and contained two potential translational start sites, producing proteins of 50.7 kDa and 54.7 kDa. Western blot analysis using polyclonal antibodies generated against rat liver MCD showed that the 50.7 kDa isoform of MCD is most abundant in heart and liver, and of relatively low abundance in skeletal muscle (despite elevated MCD transcript levels in skeletal muscle). Tissue distribution experiments demonstrated that the pancreas is the only rat tissue so far identified that contains both the 50.7 kDa and 54. 7 kDa isoforms of MCD. In addition, transfection of the full-length rat liver MCD cDNA into COS cells produced two isoforms of MCD. This indicated either that both initiating methionines are functionally active, generating two proteins, or that the 54.7 kDa isoform is the only MCD protein translated and removal of the putative mitochondrial targeting pre-sequence generates a protein of approx. 50.7 kDa in size. To address this, we transiently transfected a mutated MCD expression plasmid (second ATG to GCG) into COS-7 cells and performed Western blot analysis using our anti-MCD antibody. Western blot analysis revealed that two isoforms of MCD were still present, demonstrating that the second ATG may not be responsible for translation of the 50.7 kDa isoform of MCD. These data also suggest that the smaller isoform of MCD may originate from intracellular processing. To ascertain the functional role of the 50. 7 kDa isoform of rat liver MCD, we measured liver MCD activity and expression in rats subjected to conditions which are known to alter fatty acid metabolism. The activity of MCD was significantly elevated under conditions in which hepatic fatty acid oxidation is known to increase, such as streptozotocin-induced diabetes or following a 48 h fast. A 2-fold increase in expression was observed in the streptozotocin-diabetic rats compared with control rats. In addition, MCD activity was shown to be enhanced by alkaline phosphatase treatment, suggesting phosphorylation-related control of the enzyme. Taken together, our data demonstrate that rat liver expresses a 50.7 kDa form of MCD which does not originate from the second methionine of the cDNA sequence. This MCD is regulated by at least two mechanisms (only one of which is phosphorylation), and its activity and expression are increased under conditions where fatty acid oxidation increases.
Molecular and Cellular Biochemistry | 1997
Gary D. Lopaschuk; Rick L. Barr
The isolated working rat heart is a useful experimental model which allows contractile function to be measured in hearts perfused at physiologically relevant workloads. To maintain these high workloads the heart is required to generate a tremendous amount of energy. In vivo this energy is derived primarily from the oxidation of fatty acids. In many experimental situations it is desirable to perfuse the isolated working heart in the presence of physiologically relevant concentrations of fatty acids. This is particularly important when studying energy metabolism in the heart, or in determining how fatty acids alter the outcome of myocardial ischemic injury [1, 2]. The other major source of energy for the heart is derived from the oxidation of carbohydrates (glucose and lactate), with a smaller amount of ATP also being derived from glycolysis. Two byproducts of both fatty acid and carbohydrate metabolism are H2O and CO2. By labeling the glucose, lactate, or fatty acids in the perfusate with 3H or 14C the experimenter can quantitatively collect either 3H2O or 14CO2 produced by the heart. By using radioisotopes that are labeled at specific hydrogen or carbon molecules on the various energy substrates, and by knowing the specific activity of the radiolabeled substrate used, it is possible to determine the actual rate of flux through these individual pathways. This paper will describe the experimental protocols for directly measuring fatty acid and carbohydrate metabolism in isolated working rat hearts.
Journal of Pharmacological and Toxicological Methods | 1997
Rick L. Barr; Gary D. Lopaschuk
Fatty acids and carbohydrates are the two main energy substrates used by the heart. Studies involving the regulation of these pathways in the heart have historically been hampered by a number of important technical problems. One problem is the need to provide the heart with fatty acids, which, due to their insolubility, must be delivered to the heart either bound to albumin or contained within triacylglycerol-lipoproteins. Another problem is the need to perform experiments at relevant workloads, since the work performed by the heart is a key determinant of ATP production rates. The development of the isolated working heart preparation in the 1960s has been a very powerful tool to study energy metabolism. During this golden era of cardiac energy metabolism research, a number of techniques were developed that successfully overcame these two key problems. In this article, we describe refinements to this original preparation which has allowed for simultaneous measurement of both glycolysis and glucose oxidation, or simultaneous measurements of both lactate oxidation and fatty acid oxidation.
Journal of Pharmacological and Toxicological Methods | 2000
Rick L. Barr; Gary D. Lopaschuk
The high energy demands of the heart are met primarily by the metabolism of fatty acids and carbohydrates. These energy substrates are efficiently and rapidly metabolized in order to produce the high levels of adenosine triphosphate (ATP) necessary to sustain both contractile activity and other cellular functions. Alterations in energy metabolism contribute to abnormal heart function in many cardiac diseases. As a result, a number of techniques have been developed to directly measure energy metabolism in the heart in order to study energy metabolism. Two important variables that must be considered when making these measurements are energy substrate supply to the heart and the metabolic demand of the heart (i.e. contractile function). The use of the in vitro/ex vivo heart, perfused with relevant energy substrates, is a useful experimental approach that accounts for these variables. This paper overviews a number of the techniques that are used to measure energy substrate metabolism in the isolated perfused heart. Recently developed technology that allows for the direct measurement of energy metabolism in an isolated working mouse heart preparation are also described.
Metabolism-clinical and Experimental | 1992
Tom L. Broderick; Rick L. Barr; H. Arthur Quinney; Gary D. Lopaschuk
We have previously demonstrated that withdrawal of insulin treatment from BB diabetic rats for a 24-hour period will increase the failure rate of hearts subjected to low-flow ischemia. The purpose of this study was to determine if this increased severity of ischemia was related to a decrease in glycolytic rates during ischemia. Two groups of insulin-dependent diabetic BB Wistar rats were used; in one group, insulin treatment was withheld from rats 24 hours prior to study (uncontrolled), while in the second group, the daily insulin injection was not withheld (insulin-treated). Isolated working hearts obtained from these animals were perfused with 30 mmol/L (2-3H/U-14C)-glucose and 1.2 mmol/L palmitate, at an 11.5 mm Hg left atrial preload and 80 mm Hg aortic afterload. Hearts were subjected to a 15-minute aerobic perfusion followed by 60 minutes of low-flow ischemia (coronary flow, 0.5 mL/min). Under aerobic conditions, steady-state glucose oxidation rates (measured as 14CO2 production) were decreased in the uncontrolled group compared with the insulin-treated group (85.3 +/- 21.5 v 406.2 +/- 120.1 nmol/min/g dry weight, respectively; P less than .05). Steady-state glycolytic rates (measured as 3H2O production) were also decreased in the uncontrolled group compared with the insulin-treated group (1.73 +/- 0.30 v 5.57 +/- 1.26 mumol/min/g dry weight, respectively; P less than .05). During low-flow ischemia, glucose-oxidation rates markedly decreased in both groups (23.9 +/- 8.7 and 38.3 +/- 25.2 nmol/min/g dry weight in the uncontrolled and insulin-treated diabetic rats, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)
Journal of Biological Chemistry | 1995
Naomi Kudo; Amy J. Barr; Rick L. Barr; Snehal Desai; Gary D. Lopaschuk