Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rickard Frost is active.

Publication


Featured researches published by Rickard Frost.


Nano Letters | 2012

Graphene Oxide and Lipid Membranes: Interactions and Nanocomposite Structures

Rickard Frost; Gustav Edman Jönsson; Dinko Chakarov; Sofia Svedhem; Bengt Kasemo

We have investigated the interaction between graphene oxide and lipid membranes, using both supported lipid membranes and supported liposomes. Also, the reverse situation, where a surface coated with graphene oxide was exposed to liposomes in solution, was studied. We discovered graphene oxide-induced rupture of preadsorbed liposomes and the formation of a nanocomposite, bio-nonbio multilayer structure, consisting of alternating graphene oxide monolayers and lipid membranes. The assembly process was monitored in real time by two complementary surface analytical techniques (the quartz crystal microbalance with dissipation monitoring technique (QCM-D) and dual polarization interferometry (DPI)), and the formed structures were imaged with atomic force microscopy (AFM). From a basic science point of view, the results point toward the importance of electrostatic interactions between graphene oxide and lipid headgroups. Implications from a more practical point of view concern structure-activity relationship for biological health/safety aspects of graphene oxide and the potential of the nanocomposite, multilayer structure as scaffolds for advanced biomolecular functions and sensing applications.


Langmuir | 2016

Graphene Oxide and Lipid Membranes: Size-Dependent Interactions

Rickard Frost; Sofia Svedhem; Christoph Langhammer; Bengt Kasemo

We have investigated the interaction of graphene oxide (GO) sheets with supported lipid membranes with focus on how the interaction depends on GO sheet size (three samples in the range of 90-5000 nm) and how it differs between small and large liposomes. The layer-by-layer assembly of these materials into multilamellar structures, as discovered in our previous research, is now further explored. The interaction processes were monitored by two complementary, real time, surface-sensitive analytical techniques: quartz crystal microbalance with dissipation monitoring (QCM-D, electroacoustic sensing) and indirect nanoplasmonic sensing (INPS, optical sensing). The results show that the sizes of each of the two components, graphene oxide and liposomes, are important parameters affecting the resulting multilayer structures. Spontaneous liposome rupture onto graphene oxide is obtained for large lateral dimensions of the graphene oxide sheets.


Langmuir | 2011

Pore spanning lipid bilayers on mesoporous silica having varying pore size

Maria Claesson; Rickard Frost; Sofia Svedhem; Martin Andersson

Synthetic lipid bilayers have similar properties as cell membranes and have been shown to be of great use in the development of novel biomimicry devices. In this study, lipid bilayer formation on mesoporous silica of varying pore size, 2, 4, and 6 nm, has been investigated using quartz crystal microbalance with dissipation monitoring (QCM-D), fluorescent recovery after photo bleaching (FRAP), and atomic force microscopy (AFM). The results show that pore-spanning lipid bilayers were successfully formed regardless of pore size. However, the mechanism of the bilayer formation was dependent on the pore size, and lower surface coverages of adsorbed lipid vesicles were required on the surface having the smallest pores. A similar trend was observed for the lateral diffusion coefficient (D) of fluorescently labeled lipid molecules in the membrane, which was lowest on the surface having the smallest pores and increased with the pore size. All of the pore size dependent observations are suggested to be due to the hydrophilicity of the surface, which decreases with increased pore size.


Journal of Colloid and Interface Science | 2011

Bioreducible insulin-loaded nanoparticles and their interaction with model lipid membranes

Rickard Frost; G.M.J.P.C. Coué; Johannes F.J. Engbersen; Michael Zäch; Bengt Kasemo; Sofia Svedhem

To improve design processes in the field of nanomedicine, in vitro characterization of nanoparticles with systematically varied properties is of great importance. In this study, surface sensitive analytical techniques were used to evaluate the responsiveness of nano-sized drug-loaded polyelectrolyte complexes when adsorbed to model lipid membranes. Two bioreducible poly(amidoamine)s (PAAs) containing multiple disulfide linkages in the polymer backbone (SS-PAAs) were synthesized and used to form three types of nanocomplexes by self-assembly with human insulin, used as a negatively charged model protein at neutral pH. The resulting nanoparticles collapsed on top of negatively charged model membranes upon adsorption, without disrupting the membrane integrity. These structural rearrangements may occur at a cell surface which would prevent uptake of intact nanoparticles. By the addition of glutathione, the disulfide linkages in the polymer backbone of the SS-PAAs were reduced, resulting in fragmentation of the polymer and dissociation of the adsorbed nanoparticles from the membrane. A decrease in ambient pH also resulted in destabilization of the nanoparticles and desorption from the membrane. These mimics of intracellular environments suggest dissociation of the drug formulation, a process that releases the protein drug load, when the nanocomplexes reaches the interior of a cell.


Nanoscale | 2017

Real-time in situ analysis of biocorona formation and evolution on silica nanoparticles in defined and complex biological environments

Rickard Frost; Christoph Langhammer; Tommy Cedervall

Biomolecules such as proteins immediately adsorb on the surface of nanoparticles upon their exposure to a biological environment. The formed adlayer is commonly referred to as biomolecule corona (biocorona) and defines the biological activity and toxicity of the nanoparticle. Therefore, it is essential to understand in detail the biocorona formation process, and how it is governed by parameters like composition of the biological environment, and nanoparticle size, shape and faceting. Here we present a detailed equilibrium and real time in situ study of biocorona formation at SiO2-nanoparticle surfaces upon exposure to defined (BSA, IgG) and complex (bovine serum, IgG depleted bovine serum) biological samples. We use both nanofabricated surface-associated Au core-SiO2 shell nanoparticles (faceted, d = 92-167 nm) with integrated nanoplasmonic sensing function and dispersed SiO2 nanoparticles (using DLS and SDS-PAGE). The results show that preadsorbed BSA or IgG are exchanged for other proteins when exposed to bovine serum. In addition, the results show that IgG forms a biocorona with different properties at curved (edge) and flat (facet) SiO2-nanoparticle surfaces. Our study paves the way for further real time in situ investigations of the biocorona formation and evolution kinetics, as well as the role of molecular orientation in biocorona formation, on nanoparticles with surface faceting.


Methods of Molecular Biology | 2013

Characterization of Nanoparticle–Lipid Membrane Interactions Using QCM-D

Rickard Frost; Sofia Svedhem

In vitro characterization of nanoparticles is becoming increasingly important due to the rapid development of novel nanoparticle formulations for applications in the field of nanomedicine and related areas. Commonly, nanoparticles are simply characterized with respect to their size and zeta potential, and additional in vitro characterization of nanoparticles is needed to develop useful nanoparticle structure-activity relationships. In this context it is highly interesting to characterize the interactions between nanoparticles and model interfaces, such as lipid membranes. Here, we describe a methodology to study such interactions using the quartz crystal microbalance with dissipation monitoring technique (QCM-D). In order to mimic some aspects of the native cell membrane, a supported lipid membrane is formed on the QCM-D sensor surface. Subsequently the membrane is exposed to nanoparticles, and the nanoparticle-lipid membrane interactions are monitored in real time. The outcome of such analysis provides information on the adsorption process (importantly kinetics and adsorbed amounts) as well as on the integrity of both the nanoparticles and the lipid membrane upon interaction. QCM-D analyses are suitable for screening of nanoparticle-lipid membrane interactions due to the fair throughput of the technique, which can be complemented, when needed, by additional analyses by other surface-sensitive analytical techniques.


ACS Sensors | 2017

Topographically Flat Nanoplasmonic Sensor Chips for Biosensing and Materials Science

Ferry A. A. Nugroho; Rickard Frost; Tomasz J. Antosiewicz; Joachim Fritzsche; Elin M. Larsson Langhammer; Christoph Langhammer

Nanoplasmonic sensors typically comprise arrangements of noble metal nanoparticles on a dielectric support. Thus, they are intrinsically characterized by surface topography with corrugations at the 10-100 nm length scale. While irrelevant in some bio- and chemosensing applications, it is also to be expected that the surface topography significantly influences the interaction between solids, fluids, nanoparticles and (bio)molecules, and the nanoplasmonic sensor surface. To address this issue, we present a wafer-scale nanolithography-based fabrication approach for high-temperature compatible, chemically inert, topographically flat, and laterally homogeneous nanoplasmonic sensor chips. We demonstrate their sensing performance on three different examples, for which we also carry out a direct comparison with a traditional nanoplasmonic sensor with representative surface corrugation. Specifically, we (i) quantify the film-thickness dependence of the glass transition temperature in poly(methyl metacrylate) thin films, (ii) characterize the adsorption and specific binding kinetics of the avidin-biotinylated bovine serum albumin protein system, and (iii) analyze supported lipid bilayer formation on SiO2 surfaces.


RSC Advances | 2016

TiO2 nanoparticle interactions with supported lipid membranes – an example of removal of membrane patches

Fang Zhao; Jenny Perez Holmberg; Zareen Abbas; Rickard Frost; Tora Sirkka; Bengt Kasemo; Martin Hassellöv; Sofia Svedhem

There is a need for different levels of model systems for effect studies of engineered nanoparticles and the development of nanoparticle structure–activity relationships in biological systems. Descriptors for nanoparticles based on their interactions in molecular model systems may become useful to predict toxicological responses of the nanoparticles in cells. Towards this end, we report on nanoparticle-induced formation of holes in supported model membranes. Specifically, TiO2 nanoparticle – lipid membrane interactions were studied under low ionic strength, basic conditions (pH 8), using different membrane compositions and several surface-sensitive analytical techniques. It was found that for mixed POPC/POPG (PG fractions ≥ 35%) membranes on silica supports, under conditions where electrostatic repulsion was expected, the addition of TiO2 nanoparticles resulted in transient interaction curves, consistent with the removal of part of the lipid membrane. The formation of holes was inferred from quartz crystal microbalance with dissipation (QCM-D) monitoring, as well as from optical measurements by reflectometry, and also verified by atomic force microscopy (AFM) imaging. The interaction between the TiO2 nanoparticles and the PG-containing membranes was dependent on the presence of Ca2+ ions. A mechanism is suggested where TiO2 nanoparticles act as scavengers of Ca2+ ions associated with the supported membrane, leading to weakening of the interaction between the membrane and the support and subsequent removal of lipid mass as TiO2 nanoparticles spontaneously leave the surface. This mechanism is consistent with the observed formation of holes in the supported lipid membranes.


Analytical Biochemistry | 2013

Acoustic detection of melanosome transport in Xenopus laevis melanophores

Rickard Frost; Elisabeth Norström; Lovisa J Bodin; Christoph Langhammer; Joachim Sturve; Margareta Wallin; Sofia Svedhem

Organelle transport studies are often performed using melanophores from lower vertebrates due to the ease of inducing movements of pigment granules (melanosomes) and visualizing them by optical microscopy. Here, we present a novel methodology to monitor melanosome translocation (which is a light-sensitive process) in the dark using the quartz crystal microbalance with dissipation monitoring (QCM-D) technique. This acoustic sensing method was used to study dispersion and aggregation of melanosomes in Xenopus laevis melanophores. Reversible sensor responses, correlated to optical reflectance measurements, were obtained by alternating addition and removal of melatonin (leading to melanosome aggregation) and melanocyte-stimulating hormone (MSH) (leading to melanosome dispersion). By confocal microscopy, it was shown that a vertical redistribution of melanosomes occurred during the dispersion/aggregation processes. Furthermore, the transport process was studied in the presence of cytoskeleton-perturbing agents disrupting either actin filaments (latrunculin) or microtubules (nocodazole). Taken together, these experiments suggest that the acoustic responses mainly originate from melanosome transport along actin filaments (located close to the cell membrane), as expected based on the penetration depth of the QCM-D technique. The results clearly indicate the potential of QCM-D for studies of intracellular transport processes in melanophores.


ACS Sensors | 2016

Core−Shell Nanoplasmonic Sensing for Characterization of Biocorona Formation and Nanoparticle Surface Interactions

Rickard Frost; Carl Wadell; Anders Hellman; Sverker Molander; Sofia Svedhem; Michael Persson; Christoph Langhammer

Collaboration


Dive into the Rickard Frost's collaboration.

Top Co-Authors

Avatar

Sofia Svedhem

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Bengt Kasemo

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christoph Langhammer

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fang Zhao

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zareen Abbas

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anders Hellman

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar

Carl Wadell

Chalmers University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge