Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rickard Lindblom is active.

Publication


Featured researches published by Rickard Lindblom.


PLOS ONE | 2013

Regulated Extracellular Choline Acetyltransferase Activity— The Plausible Missing Link of the Distant Action of Acetylcholine in the Cholinergic Anti-Inflammatory Pathway

Swetha Vijayaraghavan; Azadeh Karami; Shahin Aeinehband; Homira Behbahani; Alf Grandien; Bo Nilsson; Kristina Nilsson Ekdahl; Rickard Lindblom; Fredrik Piehl; Taher Darreh-Shori

Acetylcholine (ACh), the classical neurotransmitter, also affects a variety of nonexcitable cells, such as endothelia, microglia, astrocytes and lymphocytes in both the nervous system and secondary lymphoid organs. Most of these cells are very distant from cholinergic synapses. The action of ACh on these distant cells is unlikely to occur through diffusion, given that ACh is very short-lived in the presence of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), two extremely efficient ACh-degrading enzymes abundantly present in extracellular fluids. In this study, we show compelling evidence for presence of a high concentration and activity of the ACh-synthesizing enzyme, choline-acetyltransferase (ChAT) in human cerebrospinal fluid (CSF) and plasma. We show that ChAT levels are physiologically balanced to the levels of its counteracting enzymes, AChE and BuChE in the human plasma and CSF. Equilibrium analyses show that soluble ChAT maintains a steady-state ACh level in the presence of physiological levels of fully active ACh-degrading enzymes. We show that ChAT is secreted by cultured human-brain astrocytes, and that activated spleen lymphocytes release ChAT itself rather than ACh. We further report differential CSF levels of ChAT in relation to Alzheimer’s disease risk genotypes, as well as in patients with multiple sclerosis, a chronic neuroinflammatory disease, compared to controls. Interestingly, soluble CSF ChAT levels show strong correlation with soluble complement factor levels, supporting a role in inflammatory regulation. This study provides a plausible explanation for the long-distance action of ACh through continuous renewal of ACh in extracellular fluids by the soluble ChAT and thereby maintenance of steady-state equilibrium between hydrolysis and synthesis of this ubiquitous cholinergic signal substance in the brain and peripheral compartments. These findings may have important implications for the role of cholinergic signaling in states of inflammation in general and in neurodegenerative disease, such as Alzheimer’s disease and multiple sclerosis in particular.


Brain Behavior and Immunity | 2013

Strain influences on inflammatory pathway activation, cell infiltration and complement cascade after traumatic brain injury in the rat

Faiez Al Nimer; Rickard Lindblom; Mikael Ström; André Ortlieb Guerreiro-Cacais; Roham Parsa; Shahin Aeinehband; Tiit Mathiesen; Olle Lidman; Fredrik Piehl

Increasing evidence suggests that genetic background affects outcome of traumatic brain injuries (TBI). Still, there is limited detailed knowledge on what pathways/processes are affected by genetic heterogeneity. The inbred rat strains DA and PVG differ in neuronal survival following TBI. We here carried out global expressional profiling to identify differentially regulated pathways governing the response to an experimental controlled brain contusion injury. One of the most differentially regulated molecular networks concerned immune cell trafficking. Subsequent characterization of the involved cells using flow cytometry demonstrated greater infiltration of neutrophils and monocytes, as well as a higher degree of microglia activation in DA compared to PVG rats. In addition, DA rats displayed a higher number of NK cells and a higher ratio of CD161bright compared to CD161dim NK cells. Local expression of complement pathway molecules such as C1 and C3 was higher in DA and both the key complement component C3 and membrane-attack complex (MAC) could be demonstrated on axons and nerve cells. A stronger activation of the complement system in DA was associated with higher cerebrospinal fluid levels of neurofilament-light, a biomarker for nerve/axonal injury. In summary, we demonstrate substantial differences between DA and PVG rats in activation of inflammatory pathways; in particular, immune cell influx and complement activation associated with neuronal/axonal injury after TBI. These findings suggest genetic influences acting on inflammatory activation to be of importance in TBI and motivate further efforts using experimental forward genetics to identify genes/pathways that affect outcome.


Neurobiology of Aging | 2013

Functional variability in butyrylcholinesterase activity regulates intrathecal cytokine and astroglial biomarker profiles in patients with Alzheimer's disease.

Taher Darreh-Shori; Swetha Vijayaraghavan; Shahin Aeinehband; Fredrik Piehl; Rickard Lindblom; Bo Nilsson; Kristina Nilsson Ekdahl; Bengt Långström; Ove Almkvist; Agneta Nordberg

Butyrylcholinesterase (BuChE) activity is associated with activated astrocytes in Alzheimers disease brain. The BuChE-K variant exhibits 30%-60% reduced acetylcholine (ACh) hydrolyzing capacity. Considering the increasing evidence of an immune-regulatory role of ACh, we investigated if genetic heterogeneity in BuChE affects cerebrospinal fluid (CSF) biomarkers of inflammation and cholinoceptive glial function. Alzheimers disease patients (n = 179) were BCHE-K-genotyped. Proteomic and enzymatic analyses were performed on CSF and/or plasma. BuChE genotype was linked with differential CSF levels of glial fibrillary acidic protein, S100B, interleukin-1β, and tumor necrosis factor (TNF)-α. BCHE-K noncarriers displayed 100%-150% higher glial fibrillary acidic protein and 64%-110% higher S100B than BCHE-K carriers, who, in contrast, had 40%-80% higher interleukin-1β and 21%-27% higher TNF-α compared with noncarriers. A high level of CSF BuChE enzymatic phenotype also significantly correlated with higher CSF levels of astroglial markers and several factors of the innate complement system, but lower levels of proinflammatory cytokines. These individuals also displayed beneficial paraclinical and clinical findings, such as high cerebral glucose utilization, low β-amyloid load, and less severe progression of clinical symptoms. In vitro analysis on human astrocytes confirmed the involvement of a regulated BuChE status in the astroglial responses to TNF-α and ACh. Histochemical analysis in a rat model of nerve injury-induced neuroinflammation, showed focal assembly of astroglial cells in proximity of BuChE-immunolabeled sites. In conclusion, these results suggest that BuChE enzymatic activity plays an important role in regulating intrinsic inflammation and activity of cholinoceptive glial cells and that this might be of clinical relevance. The dissociation between astroglial markers and inflammatory cytokines indicates that a proper activation and maintenance of astroglial function is a beneficial response, rather than a disease-driving mechanism. Further studies are needed to explore the therapeutic potential of manipulating BuChE activity or astroglial functional status.


Antioxidants & Redox Signaling | 2013

Naturally Occurring Variation in the Glutathione-S-Transferase 4 Gene Determines Neurodegeneration After Traumatic Brain Injury

Faiez Al Nimer; Mikael Ström; Rickard Lindblom; Shahin Aeinehband; Bo-Michael Bellander; Jens R. Nyengaard; Olle Lidman; Fredrik Piehl

AIM Genetic factors are important for outcome after traumatic brain injury (TBI), although exact knowledge of relevant genes/pathways is still lacking. We here used an unbiased approach to define differentially activated pathways between the inbred DA and PVG rat strains. The results prompted us to study further if a naturally occurring genetic variation in glutathione-S-transferase alpha 4 (Gsta4) affects the outcome after TBI. RESULTS Survival of neurons after experimental TBI is increased in PVG compared to the DA strain. Global expression profiling analysis shows the glutathione metabolism pathway to be the most regulated between the strains, with increased Gsta4 in PVG among top regulated transcripts. A congenic strain (R5) with a PVG genomic insert containing the Gsta4 gene on DA background displays a reversal of the strain pattern for Gsta4 expression and increased survival of neurons compared to DA. Gsta4 is known to effectively reduce 4-hydroxynonenal (4-HNE), a noxious by-product of lipid peroxidation. Immunostaining of 4-HNE was evident in both rat and human TBI. Intracerebral injection of 4-HNE resulted in neurodegeneration with increased levels of a marker for nerve injury in cerebrospinal fluid of DA compared to R5. INNOVATION These findings provide strong support for the notion that the inherent capability of coping with increased 4-HNE after TBI affects outcome in terms of nerve cell loss. CONCLUSION A naturally occurring variation in Gsta4 expression in rats affects neurodegeneration after TBI. Further studies are needed to explore if genetic variability in Gsta4 can be associated to outcome also in human TBI.


Brain Behavior and Immunity | 2011

Both MHC and non-MHC genes regulate inflammation and T-cell response after traumatic brain injury

Faiez Al Nimer; Amennai Daniel Beyeen; Rickard Lindblom; Mikael Ström; Shahin Aeinehband; Olle Lidman; Fredrik Piehl

Genetic regulation of autoimmune neuroinflammation is a well known phenomenon, but genetic influences on inflammation following traumatic nerve injuries have received little attention. In this study we examined the inflammatory response in a rat traumatic brain injury (TBI) model, with a particular focus on major histocompatibility class II (MHC II) presentation, in two inbred rat strains that have been extensively characterized in experimental autoimmune encephalomyelitis (EAE); DA and PVG. In addition, MHC and Vra4 congenic strains on these backgrounds were studied to give information on MHC and non-MHC gene contribution. Thus, allelic differences in Vra4, harboring the Ciita gene, was found to regulate expression of the invariant chain at the mRNA level, with a much smaller effect exerted by the MHC locus itself. Notably, however, at the protein level the MHC congenic PVG-RT1(av1) strain displayed much stronger MHCII(+) presentation, as shown both by immunolabeling and flow cytometry, than the PVG strain, dwarfing the effect of Ciita. The PVG-RT1(av1) strain had significantly more T-cell influx than both DA and PVG, suggesting regulation both by MHC and non-MHC genes. Finally, in terms of outcome, the EAE susceptible DA strain displayed a significantly smaller resulting lesion volume than the resistant PVG-RT1(av1) strain. These results provide additional support for a role of adaptive immune response after neurotrauma and demonstrate that outcome is significantly affected by host genetic factors.


PLOS ONE | 2015

Complement Component C3 and Butyrylcholinesterase Activity Are Associated with Neurodegeneration and Clinical Disability in Multiple Sclerosis

Shahin Aeinehband; Rickard Lindblom; Faiez Al Nimer; Swetha Vijayaraghavan; Kerstin Sandholm; Mohsen Khademi; Tomas Olsson; Bo Nilsson; Kristina Nilsson Ekdahl; Taher Darreh-Shori; Fredrik Piehl

Dysregulation of the complement system is evident in many CNS diseases but mechanisms regulating complement activation in the CNS remain unclear. In a recent large rat genome-wide expression profiling and linkage analysis we found co-regulation of complement C3 immediately downstream of butyrylcholinesterase (BuChE), an enzyme hydrolyzing acetylcholine (ACh), a classical neurotransmitter with immunoregulatory effects. We here determined levels of neurofilament-light (NFL), a marker for ongoing nerve injury, C3 and activity of the two main ACh hydrolyzing enzymes, acetylcholinesterase (AChE) and BuChE, in cerebrospinal fluid (CSF) from patients with MS (n = 48) and non-inflammatory controls (n = 18). C3 levels were elevated in MS patients compared to controls and correlated both to disability and NFL. C3 levels were not induced by relapses, but were increased in patients with ≥9 cerebral lesions on magnetic resonance imaging and in patients with progressive disease. BuChE activity did not differ at the group level, but was correlated to both C3 and NFL levels in individual samples. In conclusion, we show that CSF C3 correlates both to a marker for ongoing nerve injury and degree of disease disability. Moreover, our results also suggest a potential link between intrathecal cholinergic activity and complement activation. These results motivate further efforts directed at elucidating the regulation and effector functions of the complement system in MS, and its relation to cholinergic tone.


Neuromolecular Medicine | 2012

Naturally Occurring Genetic Variability in Expression of Gsta4 is Associated with Differential Survival of Axotomized Rat Motoneurons

Mikael Ström; Faiez Al Nimer; Rickard Lindblom; Jens R. Nyengaard; Fredrik Piehl

A large number of molecular pathways have been implicated in the degeneration of axotomized motoneurons. We previously have demonstrated substantial differences in the survival rate of axotomized motoneurons across different rat strains. Identification of genetic differences underlying such naturally occurring strain differences is a powerful approach, also known as forward genetics, to gain knowledge of mechanisms relevant for complex diseases, like injury-induced neurodegeneration. Overlapping congenic rat strains were used to fine map a gene region on rat chromosome eight previously shown to regulate motoneuron survival after ventral root avulsion. The smallest genetic fragment, R5, contains 35 genes and displays a highly significant regulatory effect on motoneuron survival. Furthermore, expression profiling in a F2(DAxPVG) intercross demonstrates one single cis-regulated gene within the R5 fragment; Gsta4, encoding glutathione S-transferase alpha-4. Confirmation with real-time PCR shows higher Gsta4 expression in PVG compared with DA both in naïve animals and at several time points after injury. Immunolabeling with a custom made rat Gsta4 antibody demonstrates a neuronal staining pattern, with a strong cytoplasmic labeling of motoneurons. These results demonstrate and map naturally occurring genetic differences in the expression of Gsta4 is associated both with a highly significant increase in the survival of axotomized motoneurons and with a trans-regulation of several molecular pathways involved in neurodegenerative processes. This adds to a large body of evidence implicating lipid peroxidation as an important pathway for neurodegeneration.


Journal of Neuroimmunology | 2009

Identification of gene regions regulating inflammatory microglial response in the rat CNS after nerve injury

Margarita Diez; Nada Abdelmagid; Karin Harnesk; Mikael Ström; Olle Lidman; Maria Swanberg; Rickard Lindblom; Faiez Al-Nimer; Maja Jagodic; Tomas Olsson; Fredrik Piehl

Local CNS inflammation takes place in many neurological disorders and is important for autoimmune neuroinflammation. Microglial activation is strain-dependent in rats and differential MHC class II expression is influenced by variations in the Mhc2ta gene. Despite sharing Mhc2ta and MHC class II alleles, BN and LEW.1N rats differ in MHC class II expression after ventral root avulsion (VRA). We studied MHC class II expression and glial activation markers in BN rats after VRA. Our results demonstrate that MHC class II expression originates from a subpopulation of IBA1(+), ED1(-), and ED2(-) microglia. We subsequently performed a genome-wide linkage scan in an F2(BNxLEW.1N) population, to investigate gene regions regulating this inflammatory response. Alongside MHC class II, we studied the expression of MHC class I, co-stimulatory molecules, complement components, microglial markers and Il1b. MHC class II and other transcripts were commonly regulated by gene regions on chromosomes 1 and 7. Furthermore, a common region on chromosome 10 regulated expression of complement and co-stimulatory molecules, while a region on chromosome 11 regulated MHC class I. We also detected epistatic interactions in the regulation of the inflammatory process. These results reveal the complex regulation of CNS inflammation by several gene regions, which may have relevance for disease.


Journal of Immunology | 2014

Unbiased Expression Mapping Identifies a Link between the Complement and Cholinergic Systems in the Rat Central Nervous System

Rickard Lindblom; Mikael Ström; Matthias Heinig; F. Al Nimer; Shahin Aeinehband; Alexander Berg; Cecilia A. Dominguez; Swetha Vijayaraghavan; Xing-Mei Zhang; Karin Harnesk; Johan Zelano; Norbert Hubner; Staffan Cullheim; Taher Darreh-Shori; Margarita Diez; Fredrik Piehl

The complement system is activated in a wide spectrum of CNS diseases and is suggested to play a role in degenerative phenomena such as elimination of synaptic terminals. Still, little is known of mechanisms regulating complement activation in the CNS. Loss of synaptic terminals in the spinal cord after an experimental nerve injury is increased in the inbred DA strain compared with the PVG strain and is associated with expression of the upstream complement components C1q and C3, in the absence of membrane attack complex activation and neutrophil infiltration. To further dissect pathways regulating complement expression, we performed genome-wide expression profiling and linkage analysis in a large F2(DA × PVG) intercross, which identified quantitative trait loci regulating expression of C1qa, C1qb, C3, and C9. Unlike C1qa, C1qb, and C9, which all displayed distinct coregulation with different cis-regulated C-type lectins, C3 was regulated in a coexpression network immediately downstream of butyrylcholinesterase. Butyrylcholinesterase hydrolyses acetylcholine, which exerts immunoregulatory effects partly through TNF-α pathways. Accordingly, increased C3, but not C1q, expression was demonstrated in rat and mouse glia following TNF-α stimulation, which was abrogated in a dose-dependent manner by acetylcholine. These findings demonstrate new pathways regulating CNS complement expression using unbiased mapping in an experimental in vivo system. A direct link between cholinergic activity and complement activation is supported by in vitro experiments. The identification of distinct pathways subjected to regulation by naturally occurring genetic variability is of relevance for the understanding of disease mechanisms in neurologic conditions characterized by neuronal injury and complement activation.


Journal of Neuroinflammation | 2013

Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury.

Rickard Lindblom; Shahin Aeinehband; Roham Parsa; Mikael Ström; Faiez Al Nimer; Xing-Mei Zhang; Cecilia A. Dominguez; Sevasti Flytzani; Margarita Diez; Fredrik Piehl

BackgroundC-type lectin (CLEC) receptors are important for initiating and shaping immune responses; however, their role in inflammatory reactions in the central nervous system after traumatic injuries is not known. The antigen-presenting lectin-like receptor gene complex (Aplec) contains a few CLEC genes, which differ genetically among inbred rat strains. It was originally thought to be a region that regulates susceptibility to autoimmune arthritis, autoimmune neuroinflammation and infection.MethodsThe inbred rat strains DA and PVG differ substantially in degree of spinal cord motor neuron death following ventral root avulsion (VRA), which is a reproducible model of localized nerve root injury. A large F2 (DAxPVG) intercross was bred and genotyped after which global expressional profiling was performed on spinal cords from F2 rats subjected to VRA. A congenic strain, Aplec, created by transferring a small PVG segment containing only seven genes, all C-type lectins, ontoDA background, was used for further experiments together with the parental strains.ResultsGlobal expressional profiling of F2 (DAxPVG) spinal cords after VRA and genome-wide eQTL mapping identified a strong cis-regulated difference in the expression of Clec4a3 (Dcir3), a C-type lectin gene that is a part of the Aplec cluster. Second, we demonstrate significantly improved motor neuron survival and also increased T-cell infiltration into the spinal cord of congenic rats carrying Aplec from PVG on DA background compared to the parental DA strain. In vitro studies demonstrate that the Aplec genes are expressed on microglia and upregulated upon inflammatory stimuli. However, there were no differences in expression of general microglial activation markers between Aplec and parental DA rats, suggesting that the Aplec genes are involved in the signaling events rather than the primary activation of microglia occurring upon nerve root injury.ConclusionsIn summary, we demonstrate that a genetic variation in Aplec occurring among inbred strains regulates both survival of axotomized motor neurons and the degree of lymphocyte infiltration. These results demonstrate a hitherto unknown role for CLECs for intercellular communication that occurs after damage to the nervous system, which is relevant for neuronal survival.

Collaboration


Dive into the Rickard Lindblom's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Faiez Al Nimer

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge