Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rickie Patani is active.

Publication


Featured researches published by Rickie Patani.


Nature Neuroscience | 2011

Characterizing the RNA targets and position-dependent splicing regulation by TDP-43

James Tollervey; Tomaž Curk; Boris Rogelj; Michael Briese; Matteo Cereda; Melis Kayikci; Julian König; Tibor Hortobágyi; Agnes L. Nishimura; Vera Župunski; Rickie Patani; Siddharthan Chandran; Gregor Rot; Blaž Zupan; Christopher Shaw; Jernej Ule

TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.TDP-43 is a predominantly nuclear RNA-binding protein that forms inclusion bodies in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The mRNA targets of TDP-43 in the human brain and its role in RNA processing are largely unknown. Using individual nucleotide-resolution ultraviolet cross-linking and immunoprecipitation (iCLIP), we found that TDP-43 preferentially bound long clusters of UG-rich sequences in vivo. Analysis of RNA binding by TDP-43 in brains from subjects with FTLD revealed that the greatest increases in binding were to the MALAT1 and NEAT1 noncoding RNAs. We also found that binding of TDP-43 to pre-mRNAs influenced alternative splicing in a similar position-dependent manner to Nova proteins. In addition, we identified unusually long clusters of TDP-43 binding at deep intronic positions downstream of silenced exons. A substantial proportion of alternative mRNA isoforms regulated by TDP-43 encode proteins that regulate neuronal development or have been implicated in neurological diseases, highlighting the importance of TDP-43 for the regulation of splicing in the brain.


Neuropathology and Applied Neurobiology | 2007

Remyelination can be extensive in multiple sclerosis despite a long disease course.

Rickie Patani; M. Balaratnam; A. Vora; Richard Reynolds

Experimental studies using models of multiple sclerosis (MS) indicate that rapid and extensive remyelination of inflammatory demyelinated lesions is not only possible, but is the normal situation. The presence of completely remyelinated MS lesions has been noted in numerous studies and routine limited sampling of post mortem MS material suggests that remyelination may be extensive in the early stages but eventually fails. However, visual macroscopic guided sampling tends to be biased towards chronic demyelinated lesions. Here we have extensively sampled cerebral tissue from two MS cases to investigate the true extent of remyelination. Sections were cut from 185 cerebral tissue blocks and stained with haematoxylin and eosin (H&E), luxol fast blue and cresyl fast violet (LFB/CFV) and anti‐myelin oligodendrocyte glycoprotein, human leucocyte antigen‐DR (HLA‐DR) and 200 kDa neurofilament protein antibodies. Demyelinated areas were identified in 141 blocks, comprising both white matter (WMLs) and/or grey matter lesions. In total, 168 WMLs were identified, 22% of which were shadow plaques, 73% were partially remyelinated and only 5% were completely demyelinated. The average extent of lesion remyelination for all WMLs investigated was 47%. Increased density of HLA‐DR+ macrophages and microglia at the lesion border correlated significantly with more extensive remyelination. Results from this study of two patients with long standing disease suggest that remyelination in MS may be more extensive than previously thought.


The Journal of Neuroscience | 2011

Integrin Activation Promotes Axon Growth on Inhibitory Chondroitin Sulfate Proteoglycans by Enhancing Integrin Signaling

Chin Lik Tan; Jessica C. F. Kwok; Rickie Patani; Charles ffrench-Constant; Siddharthan Chandran; James W. Fawcett

Chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS lesions, where they inhibit axon regeneration. In order for axon growth and regeneration to occur, surface integrin receptors must interact with surrounding extracellular matrix molecules. We have explored the hypothesis that CSPGs inhibit regeneration by inactivating integrins and that forcing integrins into an active state might overcome this inhibition. Using cultured rat sensory neurons, we show that the CSPG aggrecan inhibits laminin-mediated axon growth by impairing integrin signaling via decreasing phosphorylated FAK (pFAK) and pSrc levels, without affecting surface integrin levels. Forcing integrin activation and signaling by manganese or an activating antibody TS2/16 reversed the inhibitory effect of aggrecan on mixed aggrecan/laminin surfaces, and enhanced axon growth from cultured rat sensory neurons (manganese) and human embryonic stem cell-derived motoneurons (TS2/16). The inhibitory effect of Nogo-A can also be reversed by integrin activation. These results suggest that inhibition by CSPGs can act via inactivation of integrins, and that activation of integrins is a potential method for improving axon regeneration after injury.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Mild oxidative stress activates Nrf2 in astrocytes, which contributes to neuroprotective ischemic preconditioning

Karen Bell; Bashayer Al-Mubarak; Jill H. Fowler; Paul Baxter; Kunal Gupta; Tadayuki Tsujita; Sudhir Chowdhry; Rickie Patani; Siddharthan Chandran; Karen Horsburgh; John D. Hayes; Giles E. Hardingham

Haskew-Layton et al. (1) reported that subtoxic doses of H2O2 fails to activate nuclear factor erythroid 2-related factor (Nrf2) in astrocytes and triggers Nrf2-independent responses that protect cocultured neurons. Contrary to this, we show that mild oxidative insults, including subtoxic H2O2, strongly activate astrocytic Nrf2/antioxidant response element (ARE)-dependent gene expression, which, moreover, contributes to neuroprotective ischemic preconditioning.


Brain | 2008

Abnormally phosphorylated tau is associated with neuronal and axonal loss in experimental autoimmune encephalomyelitis and multiple sclerosis

J M Anderson; David W. Hampton; Rickie Patani; Gareth Pryce; R A Crowther; Rebecca Reynolds; Robin J.M. Franklin; Gavin Giovannoni; D A S Compston; David Baker; Maria Grazia Spillantini; Siddharthan Chandran

The pathological correlate of clinical disability and progression in multiple sclerosis is neuronal and axonal loss; however, the underlying mechanisms are unknown. Abnormal phosphorylation of tau is a common feature of some neurodegenerative disorders, such as Alzheimers disease. We investigated the presence of tau hyperphosphorylation and its relationship with neuronal and axonal loss in chronic experimental autoimmune encephalomyelitis (CEAE) and in brain samples from patients with secondary progressive multiple sclerosis. We report the novel finding of abnormal tau phosphorylation in CEAE. We further show that accumulation of insoluble tau is associated with both neuronal and axonal loss that correlates with progression from relapsing-remitting to chronic stages of EAE. Significantly, analysis of secondary progressive multiple sclerosis brain tissue also revealed abnormally phosphorylated tau and the formation of insoluble tau. Together, these observations provide the first evidence implicating abnormal tau in the neurodegenerative phase of tissue injury in experimental and human demyelinating disease.


PLOS ONE | 2009

Activin/Nodal Inhibition Alone Accelerates Highly Efficient Neural Conversion from Human Embryonic Stem Cells and Imposes a Caudal Positional Identity

Rickie Patani; Alastair Compston; Clare A. Puddifoot; David J. A. Wyllie; Giles E. Hardingham; Nicholas Denby Allen; Siddharthan Chandran

Background Neural conversion from human embryonic stem cells (hESCs) has been demonstrated in a variety of systems including chemically defined suspension culture, not requiring extrinsic signals, as well as in an adherent culture method that involves dual SMAD inhibition using Noggin and SB431542 (an inhibitor of activin/nodal signaling). Previous studies have also determined a role for activin/nodal signaling in development of the neural plate and anterior fate specification. We therefore sought to investigate the independent influence of SB431542 both on neural commitment of hESCs and positional identity of derived neural progenitors in chemically defined substrate-free conditions. Methodology/Principal Findings We show that in non-adherent culture conditions, treatment with SB431542 alone for 8 days is sufficient for highly efficient and accelerated neural conversion from hESCs with negligible mesendodermal, epidermal or trophectodermal contamination. In addition the resulting neural progenitor population has a predominantly caudal identity compared to the more anterior positional fate of non-SB431542 treated cultures. Finally we demonstrate that resulting neurons are electro-physiologically competent. Conclusions This study provides a platform for the efficient generation of caudal neural progenitors under defined conditions for experimental study.


Nature Communications | 2011

Retinoid-independent motor neurogenesis from human embryonic stem cells reveals a medial columnar ground state

Rickie Patani; Andrew John Hollins; Thomas M. Wishart; Clare A. Puddifoot; Susana Álvarez; A. R. de Lera; David J. A. Wyllie; D. A. S. Compston; Roger A. Pedersen; Thomas H. Gillingwater; Giles E. Hardingham; Nicholas Denby Allen; Siddharthan Chandran

A major challenge in neurobiology is to understand mechanisms underlying human neuronal diversification. Motor neurons (MNs) represent a diverse collection of neuronal subtypes, displaying differential vulnerability in different human neurodegenerative diseases. The ability to manipulate cell subtype diversification is critical to establish accurate, clinically relevant in vitro disease models. Retinoid signalling contributes to caudal precursor specification and subsequent MN subtype diversification. Here we investigate the necessity for retinoic acid in motor neurogenesis from human embryonic stem cells. We show that activin/nodal signalling inhibition, followed by sonic hedgehog agonist treatment, is sufficient for MN precursor specification, which occurs even in the presence of retinoid pathway antagonists. Importantly, precursors mature into HB9/ChAT-expressing functional MNs. Furthermore, retinoid-independent motor neurogenesis results in a ground state biased to caudal, medial motor columnar identities from which a greater retinoid-dependent diversity of MNs, including those of lateral motor columns, can be selectively derived in vitro.


Cell Death & Differentiation | 2012

Human embryonic stem cell derived astrocytes mediate non-cell-autonomous neuroprotection through endogenous and drug-induced mechanisms

Kunal Gupta; Rickie Patani; Paul Baxter; Andrea Serio; David Story; Tadayuki Tsujita; John D. Hayes; Roger A. Pedersen; Giles E. Hardingham; Siddharthan Chandran

The glial environment is an important determinant of neuronal health in experimental models of neurodegeneration. Specifically, astrocytes have been shown, dependent on context, to be both injurious and protective. Human pluripotent stem cells offer a powerful new system to improve our understanding of the mechanisms underlying astrocyte-mediated neuroprotection. Here, we describe a human embryonic stem cell (HESC)-based system to assess the scope and mechanism of human astrocyte-mediated neuroprotection. We first report the generation of enriched and functional HESC-derived astrocytes, by combining BMP-mediated Smad and LIF-mediated JAK-STAT signalling. These astrocytes promote the protection of HESC-derived neurons against oxidative insults. Moreover, their neuroprotective capacity can be greatly enhanced by treatment with the nuclear factor-erythroid 2-related factor 2 (Nrf2)-activating triterpenoid 1[2-Cyano-3,12-dioxool-eana-1,9(11)-dien-28-oyl] trifluoroethylamide (CDDOTFEA). Activation of the transcription factor Nrf2 in human astrocytes by CDDOTFEA treatment induced expression of the glutamate-cysteine ligase (GCL) catalytic subunit, leading to enhanced GCL activity and glutathione production, and strong neuroprotection against H2O2. This enhanced neuroprotection was found to be dependent on astrocytic GCL activity, unlike the basal neuroprotection afforded by untreated astrocytes. Direct treatment of HESC-derived neurons with CDDOTFEA elicited no induction of Nrf2 target genes, nor any neuroprotection. Thus, human astrocytes can mediate neuroprotection through glutathione-dependent and glutathione-independent mechanisms, and represent a therapeutic target for human disorders associated with neuronal oxidative stress.


Cell Reports | 2017

Major Shifts in Glial Regional Identity Are a Transcriptional Hallmark of Human Brain Aging

Lilach Soreq; Jamie Rose; Eyal Soreq; John Hardy; Daniah Trabzuni; Mark R. Cookson; Colin Smith; Mina Ryten; Rickie Patani; Jernej Ule

Summary Gene expression studies suggest that aging of the human brain is determined by a complex interplay of molecular events, although both its region- and cell-type-specific consequences remain poorly understood. Here, we extensively characterized aging-altered gene expression changes across ten human brain regions from 480 individuals ranging in age from 16 to 106 years. We show that astrocyte- and oligodendrocyte-specific genes, but not neuron-specific genes, shift their regional expression patterns upon aging, particularly in the hippocampus and substantia nigra, while the expression of microglia- and endothelial-specific genes increase in all brain regions. In line with these changes, high-resolution immunohistochemistry demonstrated decreased numbers of oligodendrocytes and of neuronal subpopulations in the aging brain cortex. Finally, glial-specific genes predict age with greater precision than neuron-specific genes, thus highlighting the need for greater mechanistic understanding of neuron-glia interactions in aging and late-life diseases.


Developmental Cell | 2013

Dopamine from the Brain Promotes Spinal Motor Neuron Generation during Development and Adult Regeneration

Michell M. Reimer; Anneliese Norris; Jochen Ohnmacht; Rickie Patani; Zhen Zhong; Tatyana B. Dias; Veronika Kuscha; Angela L. M. Scott; Yu-Chia Chen; Stanislav Rozov; Sarah L. Frazer; Cameron Wyatt; Shin-ichi Higashijima; E. Elizabeth Patton; Pertti Panula; Siddharthan Chandran; Thomas Becker; Catherina G. Becker

Coordinated development of brain stem and spinal target neurons is pivotal for the emergence of a precisely functioning locomotor system. Signals that match the development of these far-apart regions of the central nervous system may be redeployed during spinal cord regeneration. Here we show that descending dopaminergic projections from the brain promote motor neuron generation at the expense of V2 interneurons in the developing zebrafish spinal cord by activating the D4a receptor, which acts on the hedgehog pathway. Inhibiting this essential signal during early neurogenesis leads to a long-lasting reduction of motor neuron numbers and impaired motor responses of free-swimming larvae. Importantly, during successful spinal cord regeneration in adult zebrafish, endogenous dopamine promotes generation of spinal motor neurons, and dopamine agonists augment this process. Hence, we describe a supraspinal control mechanism for the development and regeneration of specific spinal cell types that uses dopamine as a signal.

Collaboration


Dive into the Rickie Patani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulia E. Tyzack

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire E. Hall

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Jernej Ule

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge