Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rie Mukai is active.

Publication


Featured researches published by Rie Mukai.


PLOS ONE | 2013

Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages.

Akari Ishisaka; Kyuichi Kawabata; Satomi Miki; Yuko Shiba; Shoko Minekawa; Tomomi Nishikawa; Rie Mukai; Junji Terao; Yoshichika Kawai

Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that mitochondrial dysfunction plays a crucial role in the deconjugation of quercetin glucuronides in macrophages. Collectively, this study contributes to clarifying the mechanism responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites.


Frontiers in Bioscience | 2011

Dietary flavonoids as cancer-preventive and therapeutic biofactors.

Shin Nishiumi; Sayuri Miyamoto; Kyuichi Kawabata; Kohta Ohnishi; Rie Mukai; Akira Murakami; Hitoshi Ashida; Junji Terao

Flavonoids are present in many plants, and hence, in foods and ingredients derived from them. These polyphenolic compounds have attracted renewed attention as potential anticarcinogens, and the molecular mechanisms of their anticarcinogenic effects and their bioavailability have been extensively explored. In this review, we focus on the major dietary flavonoids; flavones, flavonols, and flavan-3-ols (catechins), and evaluate their roles in cancer prevention. After absorption with or without metabolic conjugation, flavonoids are transported to target organs where they exert their anticarcinogenic activity. The molecular mechanisms of the anticarcinogenic effects of flavonoids include their antagonistic effect on the aryl hydrocarbon receptor (AhR), and regulation of phase I and II drug metabolizing enzymes and phase III transporters. Experimental evidence suggests that flavonoids modulate signal transduction pathways at each stage of carcinogenesis. The interactions between flavonoids and biomolecules in vivo must be investigated in detail to identify specific targets. In addition, the potential side effects should be considered when flavonoid supplements are used for cancer prevention. Therefore, the use of flavonoids as chemopreventive agents should be further investigated to establish safe levels of flavonoid intake.


Bioscience, Biotechnology, and Biochemistry | 2010

D -Pinitol and myo-Inositol Stimulate Translocation of Glucose Transporter 4 in Skeletal Muscle of C57BL/6 Mice

Nhung Thuy Dang; Rie Mukai; Kenichi Yoshida; Hitoshi Ashida

Diabetes mellitus is a complex disease that is characterized by the defection of insulin sensitivity in such peripheral tissues as skeletal muscle, adipose tissue and liver. We have previously demonstrated that certain inositol derivatives stimulated glucose uptake accompanied by the translocation of glucose transporter 4 (GLUT4) to the plasma membrane in L6 myotubes. We investigated in this present study whether an oral intake of D-pinitol (PI) and myo-inositol (MI) would affect GLUT4 translocation in the skeletal muscle of mice. PI or MI at 1 g/kg BW administered orally to mice 30 min before a post-oral injection of glucose at 2 g/kg BW resulted in both PI and MI increasing GLUT4 translocation in the skeletal muscle and lowering the plasma glucose and insulin levels. PI and MI, therefore, have the potential to prevent diabetes mellitus by reducing the postprandial blood glucose level and stimulating GLUT4 translocation in the skeletal muscle.


PLOS ONE | 2012

Prevention of Disuse Muscle Atrophy by Dietary Ingestion of 8-Prenylnaringenin in Denervated Mice

Rie Mukai; Hitomi Horikawa; Yutaka Fujikura; Tomoyuki Kawamura; Hisao Nemoto; Takeshi Nikawa; Junji Terao

Flavonoids have attracted considerable attention in relation to their effects upon health. 8-Prenylnaringenin (8-PN) is found in the common hop (Humulus lupulus) and assumed to be responsible for the health impact of beer consumption. We wanted to clarify the effects of prenylation on the physiological functions of dietary flavonoids by comparing the effects of 8-PN with that of intact naringenin in the prevention of disuse muscle atrophy using a model of denervation in mice. Consumption of 8-PN (but not naringenin) prevented loss of weight in the gastrocnemius muscle further supported by the lack of induction of the protein content of a key ubiquitin ligase involved in muscle atrophy, atrogin-1, and by the activation of Akt phosphorylation. 8-PN content in the gastrocnemius muscle was tenfold higher than that of naringenin. These results suggested that, compared with naringenin, 8-PN was effectively concentrated into skeletal muscle to exert its preventive effects upon disuse muscle atrophy. It is likely that prenylation generates novel functions for 8-PN by enhancing its accumulation into muscle tissue through dietary intake.


Journal of Agricultural and Food Chemistry | 2012

Evaluation of the Inhibitory Effects of Quercetin-Related Flavonoids and Tea Catechins on the Monoamine Oxidase-A Reaction in Mouse Brain Mitochondria

Yauhen Bandaruk; Rie Mukai; Tomoyuki Kawamura; Hisao Nemoto; Junji Terao

Quercetin, a typical dietary flavonoid, is thought to exert antidepressant effects by inhibiting the monoamine oxidase-A (MAO-A) reaction, which is responsible for regulation of the metabolism of the neurotransmitter 5-hydroxytryptamine (5-HT) in the brain. This study compared the MAO-A inhibitory activity of quercetin with those of O-methylated quercetin (isorhamnetin, tamarixetin), luteolin, and green tea catechins ((-)-epicatechin, (-)-epicatechin gallate, (-)-epigallocatechin, and (-)-epigallocatechin gallate) by measuring the formation of the oxidative deamination product of 5-HT, 5-hydroxyindole aldehyde (5-HIAL), in mouse brain mitochondria. Quercetin was inferior to luteolin in the inhibition of MAO-A activity, whereas isorhamnetin, tamarixetin, and tea catechins scarcely exerted inhibitory activity. Quercetin did not affect MAO-A activity in mouse intestinal mitochondria, indicating that it does not evoke side effects on the metabolism of dietary monoamines in the gut. These data suggest that quercetin is a weak (but safe) MAO-A inhibitor in the modulation of 5-HT levels in the brain.


Archives of Biochemistry and Biophysics | 2010

Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction

Rie Mukai; Yasuhito Shirai; Naoaki Saito; Itsuko Fukuda; Shin Nishiumi; Kenichi Yoshida; Hitoshi Ashida

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates biological and toxicological effects by binding to its agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previously we demonstrated that flavonoids suppressed the TCDD-induced DNA-binding activity of the AhR in a structure-dependent manner. In this study, we investigated the mechanisms by which flavonoids suppressed the AhR-mediated signal transduction in mouse hepatoma Hepa-1c1c7 cells. Flavones and flavonols suppressed the TCDD-induced nuclear translocation of the AhR and dissociation of its partner proteins, heat shock protein 90 and X-associated protein 2, whereas flavanones and catechins did not. Flavonoids of all these four subclasses suppressed the phosphorylation of both AhR and Arnt and the formation of a heterodimer consisting of these proteins. Since certain flavonoids are known to inhibit mitogen-activated protein kinases (MAPKs), we confirmed the contribution of MAPK/ERK kinase (MEK) to the AhR-mediated signal transduction by using U0126, an inhibitor of MEK1/2. U0126 suppressed TCDD-induced phosphorylation of the AhR and Arnt followed by the DNA-binding activity of the AhR. Flavanones and catechins suppressed the TCDD-induced phosphorylation of ERK1/2. The inhibition of MEK/ERK phosphorylation is one of the mechanisms by which flavanones and catechins suppress the AhR-mediated signal transduction in Hepa-1c1c7 cells.


Journal of Nutrition | 2013

Prenylation Enhances Quercetin Uptake and Reduces Efflux in Caco-2 Cells and Enhances Tissue Accumulation in Mice Fed Long Term

Rie Mukai; Yutaka Fujikura; Kaeko Murota; Mariko Uehara; Shoko Minekawa; Naoko Matsui; Tomoyuki Kawamura; Hisao Nemoto; Junji Terao

Prenyl flavonoids are widely distributed in plant foods and have attracted appreciable attention in relation to their potential benefits for human health. Prenylation may enhance the biological functions of flavonoids by introducing hydrophobic properties in their basic structures. Previously, we found that 8-prenyl naringenin exerted a greater preventive effect on muscle atrophy than nonprenylated naringenin in a mouse model. Here, we aimed to estimate the effect of prenylation on the bioavailability of dietary quercetin (Q). The cellular uptake of 8-prenyl quercetin (PQ) and Q in Caco-2 cells and C2C12 myotube cells was examined. Prenylation significantly enhanced the cellular uptake by increasing the lipophilicity in both cell types. In Caco-2 cells, efflux of PQ to the basolateral side was <15% of that of Q, suggesting that prenylation attenuates transport from the intestine to the circulation. After intragastric administration of PQ or Q to mice or rats, the area under the concentration-time curve for PQ in plasma and lymph was 52.5% and 37.5% lower than that of Q, respectively. PQ and its O-methylated form (MePQ) accumulated at much higher amounts than Q and O-methylated Q in the liver (Q: 3400%; MePQ: 7570%) and kidney (Q: 385%; MePQ: 736%) of mice after 18 d of feeding. These data suggest that prenylation enhances the accumulation of Q in tissues during long-term feeding, even though prenylation per se lowers its intestinal absorption from the diet.


Archives of Biochemistry and Biophysics | 2014

Specific localization of quercetin-3-O-glucuronide in human brain.

Akari Ishisaka; Rie Mukai; Junji Terao; Noriyuki Shibata; Yoshichika Kawai

In recent years, many papers have suggested that dietary flavonoids may exert beneficial effects in the brain tissue for the protection of neurons against oxidative stress and inflammation. However, the bioavailability of flavonoids across the blood-brain barrier and the localization in the brain remain controversial. Thus, we examined the localization of quercetin-3-O-glucuronide (Q3GA), a major phase-II metabolite of quercetin, in the human brain tissues with or without cerebral infarction by immunohistochemical staining using anti-Q3GA antibody. A significant immunoreactivity was observed in the epithelial cells of the choroid plexus, which constitute the structural basis of the blood-cerebrospinal fluid (CSF) barrier, and in the foamy macrophages of recent infarcts. The cellular accumulation of Q3GA was also reproduced in vitro in macrophage-like RAW264, microglial MG6, and brain capillary endothelial RBEC1. It is of interest that a common feature of these cell lines is the deconjugation of Q3GA, resulting in the cellular accumulation of non-conjugated quercetin and the methylated forms. We then examined the anti-inflammatory activity of Q3GA and the deconjugated forms in the lipopolysaccharide-stimulated macrophage cells and revealed that the deconjugated forms (quercetin and a methylated form isorhamnetin), but not Q3GA itself, exhibited inhibitory effects on the inflammatory responses through attenuation of the c-Jun N-terminal kinase pathway. These results suggested that a quercetin glucuronide can pass through the blood-brain barrier, perhaps the CSF barrier, accumulate in specific types of cells, such as macrophages, and act as anti-inflammatory agents in the brain through deconjugation into the bioactive non-conjugated forms.


Journal of Natural Products | 2010

Quercetin Prevents Unloading-Derived Disused Muscle Atrophy by Attenuating the Induction of Ubiquitin Ligases in Tail-Suspension Mice

Rie Mukai; Reiko Nakao; Hironori Yamamoto; Takeshi Nikawa; Eiji Takeda; Junji Terao

The effects of quercetin (1) were investigated on disused muscle atrophy using mice that underwent tail suspension. Periodic injection of 1 into the gastrocnemius muscle suppressed muscle weight loss and ubiquitin ligase expression. Compound 1 reduced the enhancement of lipid peroxidation in the muscle. Injection of N-acetyl-l-cysteine, but not flavone (2), also prevented muscle weight loss and enhancement of lipid peroxidation. These findings demonstrate that 1 can prevent disused muscle atrophy by attenuating the expression of ubiquitin ligases and that such prevention originates from its antioxidant activity.


Archives of Biochemistry and Biophysics | 2014

Prenylation modulates the bioavailability and bioaccumulation of dietary flavonoids.

Junji Terao; Rie Mukai

Prenylflavonoids are distributed widely in the plant kingdom and have attracted appreciable attention because of their potential benefits for human health. Prenylation may be a promising tool for applying the biological functions of flavonoids to clinical uses. The bioavailability and bioaccumulation of prenylflavonoids have not been clarified, but extensive studies have been accomplished on their biological functions. This review provides current knowledge on the bioavailability of prenylflavonoids, including their absorption and metabolism in the intestine, as well as their bioaccumulation in specific tissues. Despite higher uptake into epithelial cells of the digestive tract, the bioavailability of single-dose prenylflavonoids seems to be lower than that of the parent flavonoids. Efflux from epithelial cells to the blood circulation is likely to be restricted by prenyl groups, resulting in insufficient increase in the plasma concentration. Rodent studies have revealed that prenylation enhances accumulation of naringenin in muscle tissue after long-term feeding; and that prenylation accelerates accumulation of quercetin in liver tissue. Efflux from hepatocytes to blood and enterohepatic circulations may be restricted by prenyl groups, thereby promoting slow excretion of prenylflavonoids from the blood circulation and efficient uptake to tissues. The hepatotoxicity and other deleterious effects, taken together with beneficial effects, should be considered because unexpectedly high accumulation may occur in some tissues after long-term supplementation.

Collaboration


Dive into the Rie Mukai's collaboration.

Top Co-Authors

Avatar

Junji Terao

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hisao Nemoto

Kawasaki Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arisa Ochi

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar

Ayako Ohno

University of Tokushima

View shared research outputs
Researchain Logo
Decentralizing Knowledge