Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rieko Muramatsu is active.

Publication


Featured researches published by Rieko Muramatsu.


Nature Neuroscience | 2011

miR-124a is required for hippocampal axogenesis and retinal cone survival through Lhx2 suppression

Rikako Sanuki; Akishi Onishi; Chieko Koike; Rieko Muramatsu; Satoshi Watanabe; Yuki Muranishi; Shoichi Irie; Shinji Uneo; Toshiyuki Koyasu; Ryosuke Matsui; Yoan Cherasse; Yoshihiro Urade; Dai Watanabe; Mineo Kondo; Toshihide Yamashita; Takahisa Furukawa

MicroRNA-124a (miR-124a) is the most abundant microRNA expressed in the vertebrate CNS. Despite past investigations into the role of miR-124a, inconsistent results have left the in vivo function of miR-124a unclear. We examined the in vivo function of miR-124a by targeted disruption of Rncr3 (retinal non-coding RNA 3), the dominant source of miR-124a. Rncr3−/− mice exhibited abnormalities in the CNS, including small brain size, axonal mis-sprouting of dentate gyrus granule cells and retinal cone cell death. We found that Lhx2 is an in vivo target mRNA of miR-124a. We also observed that LHX2 downregulation by miR-124a is required for the prevention of apoptosis in the developing retina and proper axonal development of hippocampal neurons. These results suggest that miR-124a is essential for the maturation and survival of dentate gyrus neurons and retinal cones, as it represses Lhx2 translation.


Nature Medicine | 2012

GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy.

Ryuta Koyama; Kentaro Tao; Takuya Sasaki; Junya Ichikawa; Daisuke Miyamoto; Rieko Muramatsu; Norio Matsuki; Yuji Ikegaya

Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood. Febrile seizures induced an upregulation of GABAA receptors (GABAA-Rs) in neonatally generated granule cells, and hyperactivation of excitatory GABAA-Rs caused a reversal in the direction of granule cell migration. This abnormal migration was prevented by RNAi-mediated knockdown of the Na+K+2Cl− co-transporter (NKCC1), which regulates the excitatory action of GABA. NKCC1 inhibition with bumetanide after febrile seizures rescued the granule cell ectopia, susceptibility to limbic seizures and development of epilepsy. Thus, this work identifies a previously unknown pathogenic role of excitatory GABAA-R signaling and highlights NKCC1 as a potential therapeutic target for preventing granule cell ectopia and the development of epilepsy after febrile seizures.


Neuroscience | 2007

Neonatally born granule cells numerically dominate adult mice dentate gyrus.

Rieko Muramatsu; Yuji Ikegaya; Norio Matsuki; Ryuta Koyama

Hippocampal granule cells (GCs) are continuously generated in the subgranular zone of the dentate gyrus (DG) and functionally incorporated to dentate neural circuits even in adulthood. This raises a question about the fate of neonatally born GCs in adult DG. Do they exist until adulthood or are they largely superseded by adult-born GCs? To investigate this question, we examined the contributions of postnatally born GCs to the adult mouse DG. C57BL/6 mice were grouped in three different postnatal (P) ages (group 1: P0, group 2: P7, and group 3: P35) and received a daily bromodeoxyuridine (BrdU) injection for three consecutive days (P0/1/2, P7/8/9, and P35/36/37, respectively) to label dividing cells. At 6 months old, hippocampal sections were prepared from the animals and immunostained with anti-BrdU antibody and an antibody against the homeobox prospero-like protein Prox1, a marker of GCs. We defined BrdU- and Prox1-double positive cells as newborn GCs and analyzed their density and distribution in the granule cell layer (gcl), revealing that newborn GCs of each group still existed 6 months after BrdU injections and that the density of GCs born during P0-2 (group 1) was significantly higher compared with the other groups. Although the density of newborn GCs in the each group did not differ between male and female, the radial distribution of them in gcl showed some differences, that is, male newborn GCs localized toward the molecular layer compared with female ones in group 1, while to the hilus in group 2. These results suggest that GCs born in early postnatal days numerically dominate adult DG and that there exist sex differences in GC localizations which depend on the time when they were born.


Nature Medicine | 2011

RGMa modulates T cell responses and is involved in autoimmune encephalomyelitis

Rieko Muramatsu; Takekazu Kubo; Masahiro Mori; Yuka Nakamura; Yuki Fujita; Tsugio Akutsu; Tatsusada Okuno; Junko Taniguchi; Atsushi Kumanogoh; Mari Yoshida; Hideki Mochizuki; Satoshi Kuwabara; Toshihide Yamashita

In multiple sclerosis, activated CD4+ T cells initiate an immune response in the brain and spinal cord, resulting in demyelination, degeneration and progressive paralysis. Repulsive guidance molecule-a (RGMa) is an axon guidance molecule that has a role in the visual system and in neural tube closure. Our study shows that RGMa is expressed in bone marrow–derived dendritic cells (BMDCs) and that CD4+ T cells express neogenin, a receptor for RGMa. Binding of RGMa to CD4+ T cells led to activation of the small GTPase Rap1 and increased adhesion of T cells to intracellular adhesion molecule-1 (ICAM-1). Neutralizing antibodies to RGMa attenuated clinical symptoms of mouse myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) and reduced invasion of inflammatory cells into the CNS. Silencing of RGMa in MOG-pulsed BMDCs reduced their capacity to induce EAE following adoptive transfer to naive C57BL/6 mice. CD4+ T cells isolated from mice treated with an RGMa-specific antibody showed diminished proliferative responses and reduced interferon-γ (IFN-γ), interleukin-2 (IL-2), IL-4 and IL-17 secretion. Incubation of PBMCs from patients with multiple sclerosis with an RGMa-specific antibody reduced proliferative responses and pro-inflammatory cytokine expression. These results demonstrate that an RGMa-specific antibody suppresses T cell responses, and suggest that RGMa could be a promising molecular target for the treatment of multiple sclerosis.


Nature Medicine | 2012

Angiogenesis induced by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin

Rieko Muramatsu; Chisato Takahashi; Shuzo Miyake; Harutoshi Fujimura; Hideki Mochizuki; Toshihide Yamashita

Angiogenesis is a prominent feature of central nervous system (CNS) disease and has roles in both the continued promotion of inflammation and the subsequent repair processes. Here we report that prostacyclin (or prostaglandin I2 (PGI2)) derived from new vessels promotes axonal remodeling of injured neuronal networks after CNS inflammation. In a localized model of experimental autoimmune encephalomyelitis (EAE), new vessels formed around the inflammatory lesion, followed by sprouting of adjacent corticospinal tract (CST) fibers. These sprouting fibers formed a compensatory motor circuit, leading to recovery of motor function. Capillary endothelial cell–derived prostacyclin bound to its receptor, the type I prostaglandin receptor (IP receptor), on CST neurons, promoting sprouting of CST fibers and contributing to the repair process. Inhibition of prostacyclin receptor signaling impaired motor recovery, whereas the IP receptor agonist iloprost promoted axonal remodeling and motor recovery after the induction of EAE. These findings reveal an important function of angiogenesis in neuronal rewiring and suggest that prostacyclin is a promising molecule for enhancing functional recovery from CNS disease.


Cell Death and Disease | 2013

Prostacyclin promotes oligodendrocyte precursor recruitment and remyelination after spinal cord demyelination

Chisato Takahashi; Rieko Muramatsu; Harutoshi Fujimura; Hideki Mochizuki; Toshihide Yamashita

Adult oligodendrocyte precursor cells (OPCs) are located adjacent to demyelinated lesion and contribute to myelin repair. The crucial step in remyelination is the migration of OPCs to the demyelinated area; however, the mechanism of OPC migration remains to be fully elucidated. Here we show that prostacyclin (prostaglandin I2, PGI2) promotes OPC migration, thereby promoting remyelination and functional recovery in mice after demyelination induced by injecting lysophosphatidylcholine (LPC) into the spinal cord. Prostacyclin analogs enhanced OPC migration via a protein kinase A (PKA)-dependent mechanism, and prostacyclin synthase expression was increased in the spinal cord after LPC injection. Notably, pharmacological inhibition of prostacyclin receptor (IP receptor) impaired remyelination and motor recovery, whereas the administration of a prostacyclin analog promoted remyelination and motor recovery after LPC injection. Our results suggest that prostacyclin could be a key molecule for facilitating the migration of OPCs that are essential for repairing demyelinated areas, and it may be useful in treating disorders characterized by demyelination.


Brain | 2010

The ratio of ‘deleted in colorectal cancer’ to ’uncoordinated-5A‘ netrin-1 receptors on the growth cone regulates mossy fibre directionality

Rieko Muramatsu; Soichiro Nakahara; Junya Ichikawa; Keisuke Watanabe; Norio Matsuki; Ryuta Koyama

Proper axonal targeting is fundamental to the establishment of functional neural circuits. The hippocampal mossy fibres normally project towards the CA3 region. In the hippocampi of patients with temporal lobe epilepsy and related animal models, however, mossy fibres project towards the molecular layer and produce the hyperexcitable recurrent networks. The cellular and molecular mechanisms underlying this aberrant axonal targeting, known as mossy fibre sprouting, remain unclear. Netrin-1 attracts or repels axons depending on the composition of its attraction-mediating receptor, deleted in colorectal cancer, and its repulsion-mediating receptor, uncoordinated-5, on the growth cone; but the roles of netrin-1-dependent guidance in pathological conditions are largely unknown. In this study, we examined the role of netrin-1 and its receptors in mossy fibre guidance and report that enhanced neuronal activity changes netrin-1-mediated cell targeting by the axons under hyperexcitable conditions. Netrin-1 antibody or Dcc ribonucleic acid interference attenuated mossy fibre growth towards CA3 in slice overlay assays. The axons were repelled from CA3 and ultimately innervated the molecular layer when hyperactivity was pharmacologically introduced. We first hypothesized that a reduction in netrin-1 expression in CA3 underlies the phenomenon, but found that its expression was increased. We then examined two possible activity-dependent changes in netrin-1 receptor expression: a reduction in the deleted in colorectal cancer receptor and induction of uncoordinated-5 receptor. Hyperactivity did not affect the surface expression of the deleted in colorectal cancer receptor on the growth cone, but it increased that of uncoordinated-5A, which was suppressed by blocking cyclic adenosine monophosphate signalling. In addition, Dcc knockdown did not affect hyperactivity-induced mossy fibre sprouting in the slice cultures, whereas Unc5a knockdown rescued the mistargeting. Thus, netrin-1 appears to attract mossy fibres via the deleted in colorectal cancer receptor, while it repels them via cyclic adenosine monophosphate-induced uncoordinated-5A under hyperexcitable conditions, resulting in mossy fibre sprouting.


Journal of Biological Chemistry | 2015

Prostacyclin Prevents Pericyte Loss and Demyelination Induced by Lysophosphatidylcholine in the Central Nervous System

Rieko Muramatsu; Mariko Kuroda; Ken Matoba; Hsiaoyun Lin; Chisato Takahashi; Yoshihisa Koyama; Toshihide Yamashita

Background: Pericyte damage is closely associated with the progression of neurodegeneration and neuronal dysfunction in the central nervous system (CNS). Results: Prostacyclin attenuates pericyte damage following vascular barrier dysfunction in the adult CNS. Conclusion: Prostacyclin therapy diminishes demyelination and neuronal deficits in pathophysiological conditions. Significance: This study provides the first evidence that pericyte protection contributes to attenuate disease progression in adult CNS. Pericytes play pivotal roles in physiological and pathophysiological conditions in the central nervous system. As pericytes prevent vascular leakage, they can halt neuronal damage stemming from a compromised blood-brain barrier. Therefore, pericytes may be a good target for the treatment of neurodegenerative disorders, although evidence is lacking. In this study, we show that prostacyclin attenuates lysophosphatidylcholine (LPC)-mediated vascular dysfunction through pericyte protection in the adult mouse spinal cord. LPC decreased the number of pericytes in an in vitro blood-brain barrier model, and this decrease was prevented by iloprost treatment, a prostacyclin analog. Intrathecal administration of iloprost attenuated vascular barrier disruption after LPC injection in the mouse spinal cord. Furthermore, iloprost treatment diminished demyelination and motor function deficits in mice injected with LPC. These results support the notion that prostacyclin acts on pericytes to maintain vascular barrier integrity.


Brain Research | 2015

Thromboxane A2 stimulates neurite outgrowth in cerebral cortical neurons via mitogen activated protein kinase signaling.

Satoko Sumimoto; Rieko Muramatsu; Toshihide Yamashita

Thromboxane A2 (TXA2) is a central prostanoid in the cardiovascular system and is a crucial mediator of vascular homeostasis and platelet aggregation. In this study, we report a novel role for TXA2 in neurite outgrowth. TXA2 receptor is expressed in rat cortical neurons, and treatment with the TXA2 agonist U-46619 promotes neurite outgrowth in a concentration-dependent manner. We investigated the molecular mechanism underlying U-46619-induced neurite outgrowth in cortical neurons. Blockade of the phosphorylation of mitogen activated protein kinase (MAPK) prevents U-46619-mediated neurite outgrowth. These data indicates that TXA2 functions as a positive regulator of neurite outgrowth via a mechanism dependent on MAPKs in cortical neurons.


Scientific Reports | 2016

The P2X4 receptor is required for neuroprotection via ischemic preconditioning

Tomohiko Ozaki; Rieko Muramatsu; Miwa Sasai; Masahiro Yamamoto; Yoshiaki Kubota; Toshiyuki Fujinaka; Toshiki Yoshimine; Toshihide Yamashita

Ischemic preconditioning (IPC), a procedure consisting of transient ischemia and subsequent reperfusion, provides ischemic tolerance against prolonged ischemia in the brain. Although the blood flow changes mediated by IPC are primarily perceived by vascular endothelial cells, the role of these cells in ischemic tolerance has not been fully clarified. In this study, we found that the P2X4 receptor, which is abundantly expressed in vascular endothelial cells, is required for ischemic tolerance following middle artery occlusion (MCAO) in mice. Mechanistically, the P2X4 receptor was stimulated by fluid shear stress, which mimics reperfusion, thus promoting the increased expression of osteopontin, a neuroprotective molecule. Furthermore, we found that the intracerebroventricular administration of osteopontin was sufficient to exert a neuroprotective effect mediated by preconditioning-stimulated P2X4 receptor activation. These results demonstrate a novel mechanism whereby vascular endothelial cells are involved in ischemic tolerance.

Collaboration


Dive into the Rieko Muramatsu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge