Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riikka Kärnä is active.

Publication


Featured researches published by Riikka Kärnä.


Experimental Cell Research | 2009

4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3.

Anne Kultti; Sanna Pasonen-Seppänen; Marjo Jauhiainen; Kirsi Rilla; Riikka Kärnä; Emma Pyöriä; Raija Tammi; Markku Tammi

Hyaluronan accumulation on cancer cells and their surrounding stroma predicts an unfavourable disease outcome, suggesting that hyaluronan enhances tumor growth and spreading. 4-Methylumbelliferone (4-MU) inhibits hyaluronan synthesis and retards cancer spreading in experimental animals through mechanisms not fully understood. These mechanisms were studied in A2058 melanoma cells, MCF-7 and MDA-MB-361 breast, SKOV-3 ovarian and UT-SCC118 squamous carcinoma cells by analysing hyaluronan synthesis, UDP-glucuronic acid (UDP-GlcUA) content, and hyaluronan synthase (HAS) mRNA levels. The maximal inhibition in hyaluronan synthesis ranged 22-80% in the cell lines tested. Active glucuronidation of 4-MU produced large quantities of 4-MU-glucuronide, depleting the cellular UDP-GlcUA pool. The maximal reduction varied between 38 and 95%. 4-MU also downregulated HAS mRNA levels: HAS3 was 84-60% lower in MDA-MB-361, A2058 and SKOV-3 cells. HAS2 was the major isoenzyme in MCF-7 cells and lowered by 81%, similar to 88% in A2058 cells. These data indicate that both HAS substrate and HAS2 and/or HAS3 mRNA are targeted by 4-MU. Despite different target point sensitivities, the reduction of hyaluronan caused by 4-MU was associated with a significant inhibition of cell migration, proliferation and invasion, supporting the importance of hyaluronan synthesis in cancer, and the therapeutic potential of hyaluronan synthesis inhibition.


Journal of Biological Chemistry | 2013

Hyaluronan Synthase 1 (HAS1) Requires Higher Cellular UDP-GlcNAc Concentration than HAS2 and HAS3

Kirsi Rilla; Sanna Oikari; Tiina A. Jokela; Juha M.T. Hyttinen; Riikka Kärnä; Raija Tammi; Markku Tammi

Background: HAS isoenzymes differ in enzymatic activity and regulation. Results: HAS1 requires higher UDP-sugar concentration than HAS2 and HAS3. Conclusion: HAS1 activity is highly dependent, and its expression correlates with cellular UDP-sugar supply. Significance: Enhanced UDP-sugar levels are potential mediators of enhanced hyaluronan secretion in cancer and inflammation. Mammals have three homologous genes encoding proteins with hyaluronan synthase activity (Has1–3), all producing an identical polymer from UDP-N-acetylglucosamine and UDP-glucuronic acid. To compare the properties of these isoenzymes, COS-1 cells, with minor endogenous hyaluronan synthesis, were transfected with human Has1–3 isoenzymes. HAS1 was almost unable to secrete hyaluronan or form a hyaluronan coat, in contrast to HAS2 and HAS3. This failure of HAS1 to synthesize hyaluronan was compensated by increasing the cellular content of UDP-N-acetyl glucosamine by ∼10-fold with 1 mm glucosamine in the growth medium. Hyaluronan synthesis driven by HAS2 was less affected by glucosamine addition, and HAS3 was not affected at all. Glucose-free medium, leading to depletion of the UDP-sugars, markedly reduced hyaluronan synthesis by all HAS isoenzymes while raising its concentration from 5 to 25 mm had a moderate stimulatory effect. The results indicate that HAS1 is almost inactive in cells with low UDP-sugar supply, HAS2 activity increases with UDP-sugars, and HAS3 produces hyaluronan at high speed even with minimum substrate content. Transfected Has2 and particularly Has3 consumed enough UDP-sugars to reduce their content in COS-1 cells. Comparison of different human cell types revealed ∼50-fold differences in the content of UDP-N-acetylhexosamines and UDP-glucuronic acid, correlating with the expression level of Has1, suggesting cellular coordination between Has1 expression and the content of UDP-sugars.


Journal of Biological Chemistry | 2011

Cellular Content of UDP-N-acetylhexosamines Controls Hyaluronan Synthase 2 Expression and Correlates with O-Linked N-Acetylglucosamine Modification of Transcription Factors YY1 and SP1

Tiina A. Jokela; Katri M. Makkonen; Sanna Oikari; Riikka Kärnä; Elina Koli; Gerald W. Hart; Raija Tammi; Carsten Carlberg; Markku Tammi

Hyaluronan, a high molecular mass polysaccharide on the vertebrate cell surface and extracellular matrix, is produced at the plasma membrane by hyaluronan synthases using UDP-GlcNAc and UDP-GlcUA as substrates. The availability of these UDP-sugar substrates can limit the synthesis rate of hyaluronan. In this study, we show that the cellular level of UDP-HexNAc also controls hyaluronan synthesis by modulating the expression of HAS2 (hyaluronan synthase 2). Increasing UDP-HexNAc in HaCaT keratinocytes by adding glucosamine down-regulated HAS2 gene expression, whereas a decrease in UDP-HexNAc, realized by mannose treatment or siRNA for GFAT1 (glutamine:fructose-6-phosphate amidotransferase 1), enhanced expression of the gene. Tracing the UDP-HexNAc-initiated signal to the HAS2 promoter revealed no change in the binding of STAT3, NF-κB, and cAMP response element-binding protein, shown previously to mediate growth factor and cytokine signals on HAS2 expression. Instead, altered binding of SP1 and YY1 to the promoter correlated with cellular UDP-HexNAc content and inhibition of HAS2 expression. siRNA silencing of YY1 and SP1 confirmed their inhibitory effects on HAS2 expression. Reduced and increased levels of O-GlcNAc-modified SP1 and YY1 proteins were associated with stimulation or inhibition of HAS2 expression, respectively. Our data are consistent with the hypothesis that, by regulating the level of protein O-GlcNAc modifications, cellular UDP-HexNAc content controls HAS2 transcription and decreases the effects on hyaluronan synthesis that would result from cellular fluctuations of this substrate.


Experimental Cell Research | 2013

Hyaluronan production enhances shedding of plasma membrane-derived microvesicles

Kirsi Rilla; Sanna Pasonen-Seppänen; Ashik Jawahar Deen; Ville V.T. Koistinen; Sara Wojciechowski; Sanna Oikari; Riikka Kärnä; Genevieve Bart; Kari Törrönen; Raija Tammi; Markku Tammi

Many cell types secrete plasma membrane-bound microvesicles, suggested to play an important role in tissue morphogenesis, wound healing, and cancer spreading. However, the mechanisms of their formation have remained largely unknown. It was found that the tips of long microvilli induced in cells by overexpression of hyaluronan synthase 3 (HAS3) were detach into the culture medium as microvesicles. Moreover, several cell types with naturally active hyaluronan synthesis released high numbers of plasma membrane-derived vesicles, and inhibition of hyaluronan synthesis reduced their formation. The vesicles contained HAS, and were covered with a thick hyaluronan coat, a part of which was retained even after purification with high-speed centrifugation. HAS3 overexpressing MDCK cells cultured in a 3-D matrix as epithelial cysts released large amounts of HAS- and hyaluronan-positive vesicles from their basal surfaces into the extracellular matrix. As far as we know, hyaluronan synthesis is one of the first molecular mechanisms shown to stimulate the production of microvesicles. The microvesicles have a potential to deliver the hyaluronan synthase machinery and membrane and cytoplasmic materials to other cells, influencing tissue regeneration, inflammation and tumor progression.


Histochemistry and Cell Biology | 2014

Tissue distribution and subcellular localization of hyaluronan synthase isoenzymes

Kari Törrönen; Kaisa Nikunen; Riikka Kärnä; Markku Tammi; Raija Tammi; Kirsi Rilla

Hyaluronan synthases (HAS) are unique plasma membrane glycosyltransferases secreting this glycosaminoglycan directly to the extracellular space. The three HAS isoenzymes (HAS1, HAS2, and HAS3) expressed in mammalian cells differ in their enzymatic properties and regulation by external stimuli, but clearly distinct functions have not been established. To overview the expression of different HAS isoenzymes during embryonic development and their subcellular localization, we immunostained mouse embryonic samples and cultured cells with HAS antibodies, correlating their distribution to hyaluronan staining. Their subcellular localization was further studied by GFP–HAS fusion proteins. Intense hyaluronan staining was observed throughout the development in the tissues of mesodermal origin, like heart and cartilages, but also for example during the maturation of kidneys and stratified epithelia. In general, staining for one or several HASs correlated with hyaluronan staining. The staining of HAS2 was most widespread, both spatially and temporally, correlating with hyaluronan staining especially in early mesenchymal tissues and heart. While epithelial cells were mostly negative for HASs, stratified epithelia became HAS positive during differentiation. All HAS isoenzymes showed cytoplasmic immunoreactivity, both in tissue sections and cultured cells, while plasma membrane staining was also detected, often in cellular extensions. HAS1 had brightest signal in Golgi, HAS3 in Golgi and microvillous protrusions, whereas most of the endogenous HAS2 immunoreactivity was localized in the ER. This differential pattern was also observed with transfected GFP–HASs. The large proportion of intracellular HASs suggests that HAS forms a reserve that is transported to the plasma membrane for rapid activation of hyaluronan synthesis.


Journal of Biological Chemistry | 2010

Methyl-β-cyclodextrin Suppresses Hyaluronan Synthesis by Down-regulation of Hyaluronan Synthase 2 through Inhibition of Akt

Anne Kultti; Riikka Kärnä; Kirsi Rilla; Pertti Nurminen; Elina Koli; Katri M. Makkonen; Jutong Si; Markku Tammi; Raija Tammi

Hyaluronan synthases (HAS1–3) are integral plasma membrane proteins that synthesize hyaluronan, a cell surface and extracellular matrix polysaccharide necessary for many biological processes. It has been shown that HAS is partly localized in cholesterol-rich lipid rafts of MCF-7 cells, and cholesterol depletion with methyl-β-cyclodextrin (MβCD) suppresses hyaluronan secretion in smooth muscle cells. However, the mechanism by which cholesterol depletion inhibits hyaluronan production has remained unknown. We found that cholesterol depletion from MCF-7 cells by MβCD inhibits synthesis but does not decrease the molecular mass of hyaluronan, suggesting no major influence on HAS stability in the membrane. The inhibition of hyaluronan synthesis was not due to the availability of HAS substrates UDP-GlcUA and UDP-GlcNAc. Instead, MβCD specifically down-regulated the expression of HAS2 but not HAS1 or HAS3. Screening of signaling proteins after MβCD treatment revealed that phosphorylation of Akt and its downstream target p70S6 kinase, both members of phosphoinositide 3-kinase-Akt pathway, were inhibited. Inhibitors of this pathway suppressed hyaluronan synthesis and HAS2 expression in MCF-7 cells, suggesting that the reduced hyaluronan synthesis by MβCD is due to down-regulation of HAS2, mediated by the phosphoinositide 3-kinase-Akt-mTOR-p70S6K pathway.


Journal of Biological Chemistry | 2014

Extracellular UDP-glucose activates P2Y14 Receptor and Induces Signal Transducer and Activator of Transcription 3 (STAT3) Tyr705 phosphorylation and binding to hyaluronan synthase 2 (HAS2) promoter, stimulating hyaluronan synthesis of keratinocytes.

Tiina A. Jokela; Riikka Kärnä; Katri M. Makkonen; Jarmo T. Laitinen; Raija Tammi; Markku Tammi

Background: The secretion and possible functions of extracellular UDP-sugars in epidermal keratinocytes are not known. Results: UDP-glucose activates P2Y14 receptor and JAK2, increases STAT3 Tyr705 phosphorylation, and enhances transcription of hyaluronan synthase 2 (HAS2). Conclusion: UDP-glucose release signals for enhanced HAS2 expression by keratinocytes. Significance: Stimulation of hyaluronan synthesis is an inherent part of epidermal keratinocyte activation and injury response. Hyaluronan, a major matrix molecule in epidermis, is often increased by stimuli that enhance keratinocyte proliferation and migration. We found that small amounts of UDP-sugars were released from keratinocytes and that UDP-glucose (UDP-Glc) added into keratinocyte cultures induced a specific, rapid induction of hyaluronan synthase 2 (HAS2), and an increase of hyaluronan synthesis. The up-regulation of HAS2 was associated with JAK2 and ERK1/2 activation, and specific Tyr705 phosphorylation of transcription factor STAT3. Inhibition of JAK2, STAT3, or Gi-coupled receptors blocked the induction of HAS2 expression by UDP-Glc, the latter inhibitor suggesting that the signaling was triggered by the UDP-sugar receptor P2Y14. Chromatin immunoprecipitations demonstrated increased promoter binding of Tyr(P)705-STAT3 at the time of HAS2 induction. Interestingly, at the same time Ser(P)727-STAT3 binding to its response element regions in the HAS2 promoter was unchanged or decreased. UDP-Glc also stimulated keratinocyte migration, proliferation, and IL-8 expression, supporting a notion that UDP-Glc signals for epidermal inflammation, enhanced hyaluronan synthesis as an integral part of it.


Experimental Cell Research | 2014

Hyaluronan synthase 1 (HAS1) produces a cytokine-and glucose-inducible, CD44-dependent cell surface coat.

Hanna Siiskonen; Riikka Kärnä; Juha M.T. Hyttinen; Raija Tammi; Markku Tammi; Kirsi Rilla

Hyaluronan is a ubiquitous glycosaminoglycan involved in embryonic development, inflammation and cancer. In mammals, three hyaluronan synthase isoenzymes (HAS1-3) inserted in the plasma membrane produce hyaluronan directly on cell surface. The mRNA level and enzymatic activity of HAS1 are lower than those of HAS2 and HAS3 in many cells, obscuring the importance of HAS1. Here we demonstrate using immunocytochemistry and transfection of fluorescently tagged HAS1 that its enzymatic activity depends on the ER-Golgi-plasma membrane traffic, like reported for HAS2 and HAS3. When cultured in 5 mM glucose, HAS1-transfected MCF-7 cells show very little cell surface hyaluronan, detected with a fluorescent hyaluronan binding probe. However, a large hyaluronan coat was seen in cells grown in 20 mM glucose and 1 mM glucosamine, or treated with IL-1β, TNF-α, or TGF-β. The coats were mostly removed by the presence of hyaluronan hexasaccharides, or Hermes1 antibody, indicating that they depended on the CD44 receptor, which is in a contrast to the coat produced by HAS3, remaining attached to HAS3 itself. The findings suggest that HAS1-dependent coat is induced by inflammatory agents and glycemic stress, mediated by altered presentation of either CD44 or hyaluronan, and can offer a rapid cellular response to injury and inflammation.


Histochemistry and Cell Biology | 2012

HAS3-induced accumulation of hyaluronan in 3D MDCK cultures results in mitotic spindle misorientation and disturbed organization of epithelium

Kirsi Rilla; Sanna Pasonen-Seppänen; Riikka Kärnä; Hannu M. Karjalainen; Kari Törrönen; Markku Tammi; Raija Tammi; Terhi P. Teräväinen; Aki Manninen

The amount of hyaluronan (HA) is low in simple epithelia under normal conditions, but during tumorigenesis, trauma or inflammation HA is increased on the epithelial cells and surrounding stroma. Excessive HA in epithelia is suggested to interfere with cell–cell adhesions, resulting in disruption of the epithelial barrier function. In addition, stimulated HA synthesis has been correlated with epithelial-to-mesenchymal transition and invasion of cancer cells. However, the effects of HA overload on normal epithelial morphogenesis have not been characterized in detail. Madin-Darby canine kidney (MDCK) cells form polarized epithelial cysts, when grown in a 3-dimensional (3D) matrix. These cells were used to investigate whether stimulated HA synthesis, induced by stable overexpression of GFP-HAS3, influences cell polarization and epithelial morphogenesis. GFP-HAS3 expression in polarized MDCK cells resulted in active HA secretion at apical and basolateral membrane domains. HA-deposits interfered with the formation of cell–cell junctions, resulting in impaired barrier function. In 3D cyst cultures, HA accumulated into apical lumina and was also secreted from the basal side. The HAS3-expressing cysts failed to form a single lumen and instead displayed multiple small lumina. This phenotype was correlated with aberrant mitotic spindle orientation in dividing cells. The results of this study indicate that excess pericellular HA disturbs the normal cell–cell and cell–ECM interactions in simple epithelia, leading to aberrant epithelial morphogenesis. The morphological abnormalities observed in 3D epithelial cultures upon stimulated HAS3 expression may be related to premalignant changes, including intraluminal invasion and deregulated epithelialization, probably mediated by the mitotic spindle orientation defects.


Journal of Biological Chemistry | 2014

Rab10-mediated Endocytosis of the Hyaluronan Synthase HAS3 Regulates Hyaluronan Synthesis and Cell Adhesion to Collagen

Ashik Jawahar Deen; Kirsi Rilla; Sanna Oikari; Riikka Kärnä; Genevieve Bart; Jukka Häyrinen; Avinash Rahul Bathina; Antti Ropponen; Katri M. Makkonen; Raija Tammi; Markku Tammi

Background: Hyaluronan synthases (HASs) require transport to plasma membrane for the activation of hyaluronan (HA) synthesis. Results: Rab10 overexpression inhibited, whereas Rab10 silencing increased, cell surface HA coat and HAS3-dependent hyaluronan synthesis. Conclusion: Rab10 reduces the steady-state abundance of HAS3 in the plasma membrane by enhancing HAS3 endocytosis. Significance: HA synthesis is controlled by HAS3 endocytosis mediated by Rab10. Hyaluronan synthases (HAS1–3) are unique in that they are active only when located in the plasma membrane, where they extrude the growing hyaluronan (HA) directly into cell surface and extracellular space. Therefore, traffic of HAS to/from the plasma membrane is crucial for the synthesis of HA. In this study, we have identified Rab10 GTPase as the first protein known to be involved in the control of this traffic. Rab10 colocalized with HAS3 in intracellular vesicular structures and was co-immunoprecipitated with HAS3 from isolated endosomal vesicles. Rab10 silencing increased the plasma membrane residence of HAS3, resulting in a significant increase of HA secretion and an enlarged cell surface HA coat, whereas Rab10 overexpression suppressed HA synthesis. Rab10 silencing blocked the retrograde traffic of HAS3 from the plasma membrane to early endosomes. The cell surface HA coat impaired cell adhesion to type I collagen, as indicated by recovery of adhesion following hyaluronidase treatment. The data indicate a novel function for Rab10 in reducing cell surface HAS3, suppressing HA synthesis, and facilitating cell adhesion to type I collagen. These are processes important in tissue injury, inflammation, and malignant growth.

Collaboration


Dive into the Riikka Kärnä's collaboration.

Top Co-Authors

Avatar

Markku Tammi

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Raija Tammi

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Kirsi Rilla

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Sanna Oikari

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tiina A. Jokela

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Genevieve Bart

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Katri M. Makkonen

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Piia Takabe

University of Eastern Finland

View shared research outputs
Top Co-Authors

Avatar

Ashik Jawahar Deen

University of Eastern Finland

View shared research outputs
Researchain Logo
Decentralizing Knowledge