Riina Mahlapuu
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Riina Mahlapuu.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Külliki Saar; Andrey Mazarati; Riina Mahlapuu; Gerd Hallnemo; Ursel Soomets; Kalle Kilk; Sven Hellberg; Margus Pooga; Bo-Ragnar Tolf; Tie-Jun Sten Shi; Tomas Hökfelt; Claude G. Wasterlain; Tamas Bartfai; Ülo Langel
Galanin is a neuropeptide with a wide variety of biological functions, including that of a strong endogenous anticonvulsant. No nonpeptide ligands, capable of activating galanin receptors, are available today. Based on known pharmacophores of galanin, a combinatorial library was designed, synthesized, and screened at the rat hippocampal galanin receptor. A low molecular weight galanin receptor agonist, 7-((9-fluorenylmethoxycarbonyl)cyclohexylalanyllysyl)amino-4-methylcoumarin (galnon) was found to displace 125I-galanin with micromolar affinity at Bowes cellular and rat hippocampal membranes. Autoradiographic binding assay on rat spinal cord sections confirmed the ability of galnon to displace 125I-galanin from its binding sites. Galnon inhibited adenylate cyclase activity, suggesting an agonist action at galanin receptors. When injected i.p. galnon reduced the severity and increased the latency of pentylenetetrazole-induced seizures in mice and reversed the proconvulsant effects of the galanin receptor antagonist M35, injected into a lateral ventricle. Intrahippocampal injection of galnon also shortened the duration of self-sustaining status epilepticus in rats, confirming its agonist properties in vivo. Pretreatment of rats with antisense peptide nucleic acid targeted to galanin receptor type 1 mRNA abolished the effect of galnon, suggesting mediation of its anticonvulsant properties through this receptor subtype. These findings introduce a systemically active nonpeptide galanin agonist anticonvulsant.
Annals of the New York Academy of Sciences | 2002
Ello Karelson; Riina Mahlapuu; Mihkel Zilmer; Ursel Soomets; Nenad Bogdanovic; Ülo Langel
Abstract: In the frontal cortex (FC) of the normally aging human brain, glutathione (GSH) and its novel analogue, UPF1, stimulate G proteins more than in Alzheimers disease (AD) FC. In normal aging and in AD, UPF1 is a more efficient stimulator of G proteins than GSH. In normal FC, both GSH and UPF1 stimulate G proteins, which mediate inhibitory signals to the cAMP system; while in AD, only UPF1 exhibits the same action. Stimulation of G proteins and coupled signaling by GSH antioxidant analogues, as potential signaling molecules, may ameliorate the oxidative impairments of neuronal signaling in AD.
Free Radical Research | 2007
Kersti Ehrlich; Säde Viirlaid; Riina Mahlapuu; Külliki Saar; Tiiu Kullisaar; Mihkel Zilmer; Ülo Langel; Ursel Soomets
Glutathione (GSH) is the major low-molecular weight antioxidant in mammalian cells. Thus, its analogues carrying similar and/or additional positive properties might have clinical perspectives. Here, we report the design and synthesis of a library of tetrapeptidic GSH analogues called UPF peptides. Compared to cellular GSH our designed peptidic analogues showed remarkably higher hydroxyl radical scavenging ability (EC50 of GSH: 1231.0 ± 311.8 μM; EC50 of UPF peptides: from 0.03 to 35 μM) and improved antiradical efficiency towards a stable α,α-diphenyl-β-picrylhydrazyl (DPPH) radical. The best of UPF peptides was 370-fold effective hydroxyl radical scavengers than melatonin (EC50: 11.4 ± 1.0 μM). We also found that UPF peptides do not influence the viability and membrane integrity of K562 human erythroleukemia cells even at 200 μM concentration. Dimerization of GSH and UPF peptides was compared in water and in 0.9% saline solutions. The results, together with an earlier finding that UPF1 showed protective effects in global cerebral ischemia model in rats, suggest that UPF peptides might serve both as potent antioxidants as well as leads for design of powerful non-peptidic antioxidants that correct oxidative stress-driven events.
Journal of Trace Elements in Medicine and Biology | 2014
Silver Türk; Reet Mändar; Riina Mahlapuu; Anu Viitak; Margus Punab; Tiiu Kullisaar
In this study, we aimed to compare the level of zinc, selenium, glutathione peroxidase activity and antioxidant status in following populations of men: severe inflammation in prostate (>10(6) white blood cells in prostate secretion; n=29), severe leukocytospermia, (>10(6) white blood cells in semen; n=31), mild inflammation, (0.2-1M white blood cells in semen or prostate secretion; n=24), non-inflammatory oligozoospermia (n=32) and healthy controls (n=27). Male partners of infertile couples had reduced level of antioxidative activity, selenium and zinc in their seminal plasma. Most importantly, reduced selenium levels were evident in all patient groups regardless of inflammation status. Therefore, these patients might gain some benefit from selenium supplementation.
Neuroscience Letters | 2004
P. Põder; Mihkel Zilmer; Joel Starkopf; Jaak Kals; A. Talonpoika; Andres Pulges; Ülo Langel; Tiiu Kullisaar; Säde Viirlaid; Riina Mahlapuu; A. Zarkovski; A. Arend; Ursel Soomets
Different glutathione analogues have potential to maintain or increase tissue glutathione level and to scavenge the reactive oxygen species. We designed and synthesized a novel non-toxic glutathione analogue, named UPF1, which possessed 60-fold higher hydroxyl radical scavenger efficiency in vitro, compared with glutathione itself, and investigated the effects of UPF1 on a four-vessel occlusion model of rats. The UPF1 was administered via the jugular vein in two separate experiments at two time points: 20 min before global brain ischemia and immediately before reperfusion. In both cases the number of pyramidal cells surviving in the subfield of CA1 at the dorsal hippocampus in the UPF1-treated groups of rats was twice as high as in the vehicle group.
Brain Research | 1999
Ursel Soomets; Riina Mahlapuu; Roya Tehranian; Jüri Jarvet; Ello Karelson; Mihkel Zilmer; Kerstin Iverfeldt; Matjaz Zorko; Astrid Gräslund; Ülo Langel
Modulation of GTPase and adenylate cyclase (ATP pyrophosphate-lyase, EC 4.6.1.1) activity by Alzheimers disease related amyloid beta-peptide, A beta (1-42), and its shorter fragments, A beta (12-28), A beta (25-35), were studied in isolated membranes from rat ventral hippocampus and frontal cortex. In both tissues, the activity of GTPase and adenylate cyclase was upregulated by A beta (25-35), whereas A beta (12-28) did not have any significant effect on the GTPase activity and only weakly influenced adenylate cyclase. A beta (1-42), similar to A beta (25-35), stimulated the GTPase activity in both tissues and adenylate cyclase activity in ventral hippocampal membranes. Surprisingly, A beta (1-42) did not have a significant effect on adenylate cyclase activity in the cortical membranes. At high concentrations of A beta (25-35) and A beta (1-42), decreased or no activation of adenylate cyclase was observed. The activation of GTPase at high concentrations of A beta (25-35) was pertussis toxin sensitive, suggesting that this effect is mediated by Gi/G(o) proteins. Addition of glutathione and N-acetyl-L-cysteine, two well-known antioxidants, at 1.5 and 0.5 mM, respectively, decreased A beta (25-35) stimulated adenylate cyclase activity in both tissues. Lys-A beta (16-20), a hexapeptide shown previously to bind to the same sequence in A beta-peptide, and prevent fibril formation, decreased stimulation of adenylate cyclase activity by A beta (25-35), however, NMR diffusion measurements with the two peptides showed that this effect was not due to interactions between the two and that A beta (25-35) was active in a monomeric form. Our data strongly suggest that A beta and its fragments may affect G-protein coupled signal transduction systems, although the mechanism of this interaction is not fully understood.
Current Alzheimer Research | 2014
Ceslava Kairane; Riina Mahlapuu; Kersti Ehrlich; Mihkel Zilmer; Ursel Soomets
Among the markers and targets of the early phase of Alzheimers disease (AD) pathogenesis MnSOD (mitochondrial dysfunction) and Na-pump (disturbances in function/regulation) are often highlighted. This paper focused on comparison of the effects of three antioxidants on the activity of cerebrocortical MnSOD and Na,K-ATPase from post mortem Alzheimers disease and age-matched normal brains. Antioxidant compounds with different origins: natural glutathione, synthetic UPF peptides (glutathione analogues) and phytoestrogen genistein were investigated. Firstly, MnSOD and Na,K-ATPase activities were found to be decreased in the post mortem AD brains compared with age-matched controls. Secondly, GSH had no effect on MnSOD activity, but decreased Na,K-ATPase activity both in the control and AD brains. Thirdly, UPF1 and UPF17 increased MnSOD activity, and UPF17 suppressed Na,K-ATPase activity. Further studies are needed to clarify, if the inhibitory effect of UPF17 on Na,K-ATPase could abolish the beneficial effect gained from MnSOD activation. Both the antioxidative potential of genistein and its potency to up-regulate Na,K-ATPase activity make it an attractive candidate substance to suppress the early phase of the pathogenesis of AD.
Journal of Toxicology and Environmental Health | 2009
Anna Meszka-Jordan; Riina Mahlapuu; Ursel Soomets; Gary P. Carlson
Styrene produces lung and liver damage that may be related to oxidative stress. The purpose of this study was to investigate the toxicity of (R)-styrene oxide (R-SO), the more active enantiomeric metabolite of styrene, and the protective properties of the antioxidants glutathione (GSH), N-acetylcysteine (NAC), and 4-methoxy-L-tyrosinyl-γ-L-glutamyl-L-cysteinyl-glycine (UPF1) against R-SO-induced toxicity in non-Swiss Albino (NSA) mice. UPF1 is a synthetic GSH analog that was shown to have 60 times the ability to scavenge reactive oxygen species (ROS) in comparison to GSH. R-SO toxicity to the lung was measured by elevations in the activity of lactate dehydrogenase (LDH), protein concentration, and number of cells in bronchoalveolar lavage fluid (BALF). Toxicity to the liver was measured by increases in serum sorbitol dehydrogenase (SDH) activity. Antioxidants were not able to decrease the adverse effects of R-SO on lung. However, NAC (200 mg/kg) ip and GSH (600 mg/kg), administered orally prior to R-SO (300 mg/kg) ip, showed significant protection against liver toxicity as measured by SDH activity. Unexpectedly, a synthetic GSH analog, UPF1 (0.8 mg/kg), administered intravenously (iv) prior to R-SO, produced a synergistic effect with regard to liver and lung toxicity. Treatment with UPF1 (0.8 mg/kg) iv every other day for 1 wk for preconditioning prior to R-SO ip did not result in any protection against liver and lung toxicity, but rather enhanced the toxicity when administered prior R-SO. The results of the present study demonstrated protection against R-SO toxicity in liver but not lung by the administration of the antioxidants NAC and GSH.
Molecular Brain Research | 2003
Riina Mahlapuu; Kaido Viht; L. Balaspiri; Nenad Bogdanovic; Külliki Saar; Ursel Soomets; Tiit Land; Mihkel Zilmer; Ello Karelson; Ülo Langel
The influence of three C-terminal sequences and of transmembrane domain from amyloid precursor protein (APP) on the activity of G-proteins and of the coupled cAMP-signalling system in the postmortem Alzheimers disease (AD) and age-matched control brains was compared. 10 microM APP(639-648)-APP(657-676) (PEP1) causes a fivefold stimulation in the [35S]GTPgammaS-binding to control hippocampal G-proteins. APP(657-676) (PEP2) and APP(639-648) (PEP4) showed less pronounced stimulation whereas cytosolic APP(649-669) (PEP3) showed no regulatory activity in the [35S]GTPgammaS-binding. PEP1 also showed 1.4-fold stimulatory effect of on the high-affinity GTPase and adenylate cyclase activity in control membranes, whereas in AD hippocampal membranes the stimulatory effect of PEP1 was substantially weaker. The PEP1 stimulation of the [35S]GTPgammaS-binding to the control membranes was significantly reduced by 1.5 mM glutathione, 0.5 mM antioxidant N-acetylcysteine and, in the greatest extent, by 0.01 mM of desferrioxamine. In AD hippocampus these antioxidants revealed no remarkable reducing effect on PEP1-induced stimulation. Our results suggest that C-terminal and transmembrane APP sequences possess receptor-like G-protein activating function in human hippocampus and that abnormalities of this function contribute to AD progression. The stimulatory action of these sequences on G-protein mediated signalling suggests the region-specific formation of reactive species.
Free Radical Research | 2012
Marju Raukas; Reili Rebane; Riina Mahlapuu; Viktor Jefremov; Kersti Zilmer; Ello Karelson; Nenad Bogdanovic; Mihkel Zilmer
Efficient function of the mitochondrial respiratory chain and the citric acid cycle (CAC) enzymes is required for the maintenance of human brain function. A conception of oxidative stress (OxS) was recently advanced as a disruption of redox signalling and control. Mitochondrial OxS (MOxS) is implicated in the development of Alzheimers disease (AD). Thus, both pro- and anti-oxidants of the human body and MOxS target primarily the redox-regulated CAC enzymes, like mitochondrial aconitase (MAc). We investigated the specific activity of the MAc and MOxS index (MOSI) in an age-matched control (Co), AD and Swedish Familial AD (SFAD) post-mortem autopsies collected from frontal cortex (FC) and occipital primary cortex (OC) regions of the brain. We also examined whether the mitochondrial neuroprotective signalling molecules glutathione, melatonin and 17-β-estradiol (17βE) and mitochondrially active pro-oxidant neurotoxic amyloid-β peptide can modulate the activity of the MAc isolated from FC and OC regions similarly or differently in the case of Co, AD and SFAD. The activity of redox-sensitive MAc may directly depend on the mitochondrial oxidant/antioxidant balance in age-matched Co, AD and SFAD brain regions.