Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riitta Puupponen-Pimiä is active.

Publication


Featured researches published by Riitta Puupponen-Pimiä.


Molecular Nutrition & Food Research | 2009

Tannins: Current knowledge of food sources, intake, bioavailability and biological effects

Jose M. Serrano; Riitta Puupponen-Pimiä; Andreas Dauer; Anna-Marja Aura; Fulgencio Saura-Calixto

Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.


Food Chemistry | 2003

Comparison of antioxidant activities of onion and garlic extracts by inhibition of lipid peroxidation and radical scavenging activity

Anna Maria Nuutila; Riitta Puupponen-Pimiä; Marjukka Aarni; Kirsi-Marja Oksman-Caldentey

The antioxidant activities of the methanol extracts of selected varieties and parts of garlic and onion were determined by two methods: inhibition of lipid peroxidation induced by tert-butyl hydroperoxide in isolated rat hepatocytes and scavenging activity against diphenylpicrylhydrazyl radical. The total phenolics and the main flavonoids of the hydrolysed onion and garlic samples were also analysed. The antioxidant activities obtained by the two methods were compared. Both methods gave similar antioxidant activities for pure compounds and Allium extracts. However, the radical scavenging method had many benefits compared to the lipid peroxidation method, being easier, cheaper, more specific and reproducible. The radical scavenging activities also correlated positively with the total phenolics of the extracts. Onions had clearly higher radical scavenging activities than garlic, red onion being more active than yellow onion. The skin extracts of onion possessed the highest activities.


Nutrition and Cancer | 2006

Berry Phenolics: Antimicrobial Properties and Mechanisms of Action Against Severe Human Pathogens

Liisa Nohynek; Hanna-Leena Alakomi; Marja Kähkönen; Marina Heinonen; Ilkka M. Helander; Kirsi-Marja Oksman-Caldentey; Riitta Puupponen-Pimiä

Abstract: Antimicrobial activity and mechanisms of phenolic extracts of 12 Nordic berries were studied against selected human pathogenic microbes. The most sensitive bacteria on berry phenolics were Helicobacter pylori and Bacillus cereus. Campylobacter jejuni and Candida albicans were inhibited only with phenolic extracts of cloudberry, raspberry, and strawberry, which all were rich in ellagitannins. Cloudberry extract gave strong microbicidic effects on the basis of plate count with all studied strains. However, fluorescence staining of liquid cultures of virulent Salmonella showed viable cells not detectable by plate count adhering to cloudberry extract, whereas Staphylococcus aureus cells adhered to berry extracts were dead on the basis of their fluorescence and plate count. Phenolic extracts of cloudberry and raspberry disintegrated the outer membrane of examined Salmonella strains as indicated by 1-N-phenylnaphthylamine (NPN) uptake increase and analysis of liberation of [14C]galactose- lipopolysaccharide. Gallic acid effectively permeabilized the tested Salmonella strains, and significant increase in the NPN uptake was recorded. The stability of berry phenolics and their antimicrobial activity in berries stored frozen for a year were examined using Escherichia coli and nonvirulent Salmonella enterica sv. Typhimurium. The amount of phenolic compounds decreased in all berries, but their antimicrobial activity was not influenced accordingly. Cloudberry, in particular, showed constantly strong antimicrobial activity during the storage.


Applied Microbiology and Biotechnology | 2005

Bioactive berry compounds—novel tools against human pathogens

Riitta Puupponen-Pimiä; Liisa Nohynek; Hanna-Leena Alakomi; Kirsi-Marja Oksman-Caldentey

Berry fruits are rich sources of bioactive compounds, such as phenolics and organic acids, which have antimicrobial activities against human pathogens. Among different berries and berry phenolics, cranberry, cloudberry, raspberry, strawberry and bilberry especially possess clear antimicrobial effects against, e.g. Salmonella and Staphylococcus. Complex phenolic polymers, like ellagitannins, are strong antibacterial agents present in cloudberry and raspberry. Several mechanisms of action in the growth inhibition of bacteria are involved, such as destabilisation of cytoplasmic membrane, permeabilisation of plasma membrane, inhibition of extracellular microbial enzymes, direct actions on microbial metabolism and deprivation of the substrates required for microbial growth. Antimicrobial activity of berries may also be related to antiadherence of bacteria to epithelial cells, which is a prerequisite for colonisation and infection of many pathogens. Antimicrobial berry compounds may have important applications in the future as natural antimicrobial agents for food industry as well as for medicine. Some of the novel approaches are discussed.


Trends in Food Science and Technology | 2002

Development of functional ingredients for gut health

Riitta Puupponen-Pimiä; Anna-Marja Aura; Kirsi-Marja Oksman-Caldentey; P Myllärinen; Maria Saarela; Tiina Mattila-Sandholm; Kaisa Poutanen

Abstract Microbial reactions in the gut have an essential role not only in gut health, but in general human health. The gut is the site of active fermentation of non-digestible diet components, as well as bioconversions and absorption of plant-derived compounds, such as phenolics. When developing nutritionally designed foods that promote health through gut microbial reactions, three different types of food ingredients can be used: living micro-organisms (probiotics), non-digestible carbohydrates (dietary fiber and prebiotics) and bioactive plant secondary metabolites (e.g. phenolics).


Molecular Nutrition & Food Research | 2012

Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome

Marjukka Kolehmainen; Otto T. Mykkänen; Pirkka Kirjavainen; Tiina Leppänen; Eeva Moilanen; Michiel E. Adriaens; David E. Laaksonen; Maarit Hallikainen; Riitta Puupponen-Pimiä; Leena Pulkkinen; Hannu Mykkänen; Helena Gylling; Kaisa Poutanen; Riitta Törrönen

SCOPE Low-grade inflammation is a hallmark of cardiometabolic risk. Bilberries (Vaccinium myrtillus) are rich in polyphenols with potential anti-inflammatory properties. We studied the impact of bilberries on inflammation and gene expression profile in peripheral blood mononuclear cells in subjects with metabolic syndrome. METHODS AND RESULTS In randomized, controlled dietary intervention, the participants consumed either a diet rich in bilberries (n = 15) or a control diet (n = 12). The bilberry group consumed daily an equivalent dose of 400 g fresh bilberries, while the control group maintained their habitual diet. No differences were found between the groups in body weight, glucose, or lipid metabolism, but bilberry supplementation tended to decrease serum high-sensitivity C-reactive protein, IL-6, IL-12, and LPS concentrations. An inflammation score was significantly different between the groups (p = 0.024). In transcriptomics analyses (three participants with improved oral glucose tolerance test in the bilberry group), Toll-like receptor signaling, cytoplasmic ribosomal proteins, and B-cell receptor signaling pathways were differently regulated. QPCR analyses (n = 13 and 11 in the bilberry and control groups, respectively) showed decreased expression of MMD and CCR2 transcripts associated with monocyte and macrophage function associated genes. CONCLUSION Regular bilberry consumption may reduce low-grade inflammation indicating decreased cardiometabolic risk in the long term.


Journal of Agricultural and Food Chemistry | 2011

Lingonberry (Vaccinium vitis-idaea) and European Cranberry (Vaccinium microcarpon) Proanthocyanidins: Isolation, Identification, and Bioactivities

Petri Kylli; Liisa Nohynek; Riitta Puupponen-Pimiä; Benita Westerlund-Wikström; Tiina Leppänen; Jukka Welling; Eeva Moilanen; Marina Heinonen

European, small-fruited cranberries (Vaccinium microcarpon) and lingonberries (Vaccinium vitis-idaea) were characterized for their phenolic compounds and tested for antioxidant, antimicrobial, antiadhesive, and antiinflammatory effects. The main phenolic compounds in both lingonberries and cranberries were proanthocyanidins comprising 63-71% of the total phenolic content, but anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and flavonols were also found. Proanthocyanidins are polymeric phenolic compounds consisting mainly of catechin, epicatechin, gallocatechin, and epigallocatechin units. In the present study, proanthocyanidins were divided into three groups: dimers and trimers, oligomers (mDP 4-10), and polymers (mDP > 10). Catechin, epicatechin, A-type dimers and trimers were found to be the terminal units of isolated proanthocyanidin fractions. Inhibitions of lipid oxidation in liposomes were over 70% and in emulsions over 85%, and in most cases the oligomeric or polymeric fraction was the most effective. Polymeric proanthocyanidin extracts of lingonberries and cranberries were strongly antimicrobial against Staphylococcus aureus, whereas they had no effect on other bacterial strains such as Salmonella enterica sv. Typhimurium, Lactobacillus rhamnosus and Escherichia coli. Polymeric fraction of cranberries and oligomeric fractions of both lingonberries and cranberries showed an inhibitory effect on hemagglutination of E. coli, which expresses the M hemagglutin. Cranberry phenolic extract inhibited LPS-induced NO production in a dose-dependent manner, but it had no major effect on iNOS of COX-2 expression. At a concentration of 100 μg/mL cranberry phenolic extract inhibited LPS-induced IL-6, IL-1β and TNF-α production. Lingonberry phenolics had no significant effect on IL-1β production but inhibited IL-6 and TNF-α production at a concentration of 100 μg/mL similarly to cranberry phenolic extract. In conclusion the phenolics, notably proanthocyanidins (oligomers and polymers), in both lingonberries and cranberries exert multiple bioactivities that may be exploited in food development.


Molecular Breeding | 1995

Secretion of a heat-stable fungalβ-glucanase from transgenic, suspension-cultured barley cells

Kristian Aspegren; Leena Mannonen; Anneli Ritala; Riitta Puupponen-Pimiä; Ulrika Kurtén; Marjatta Salmenkallio-Marttila; Veli Kauppinen; Teemu H. Teeri

Transgenic plant cell cultures have a potential for production and secretion of important proteins and peptides. To assess the possibilities of using a stable barley suspension culture for secretion of heterologous proteins in active form, we expressed the cDNA of the thermostableβ-glucanase (EGI) ofTrichoderma reesei in barley suspension cells. The cDNA coding for EGI and its signal sequence was placed under the control of the CaMV 35S promoter and the construction was transferred to the cells by particle bombardment. Stably transformed lines were obtained by selecting for a cotransformed antibiotic resistance marker. The expression of EGI cDNA led to accumulation of EGI in the culture medium, as shown by analysis with EGI-specific antibodies. Enzymatic assays confirmed that the EGI secreted by the suspension cells retained its activity and thermostable character. Furthermore, it was shown that the enzyme produced by the transgenic suspension culture could be used for degradation of solubleβ-glucans during mashing.


Journal of Agricultural and Food Chemistry | 2008

Enzyme-Assisted Processing Increases Antimicrobial and Antioxidant Activity of Bilberry

Riitta Puupponen-Pimiä; Liisa Nohynek; Sabine Ammann; Kirsi-Marja Oksman-Caldentey; Johanna Buchert

The effects of nine cell wall-degrading enzymes on the antimicrobial and antioxidant activities of bilberry were studied. Antimicrobial activity was measured using the human pathogens Salmonella enterica sv. Typhimurium and Staphylococcus aureus as test strains. Enzyme treatments liberated phenolics from the cell wall matrix, which clearly increased the antimicrobial activity of berry juices, press cakes, and berry mashes on the basis of plate counts. Antibacterial effects were stronger against Salmonella than against Staphylococcus bacteria. In general, the increase in activity measured as colony-forming units per milliliter was 3-5 logarithmic units against Salmonella and 1-2 units against Staphylococcus bacteria. Increase in antimicrobial activity was observed only in acidic conditions, which is also the natural environment in various berry products, such as juices. The activity profile of the pectinase preparation affected the chemistry of the phenolics due to the presence of deglycosylating activities in some preparations. The difference in phenolic profiles was reflected in the antimicrobial effects. Bilberry mashes treated with Pectinex Ultra SP-L, Pectinex 3 XL, and Pectinex BE XXL were most efficient against Salmonella bacteria, whereas mashes treated with Pectinex Smash, Pectinex BE 3-L, and Biopectinase CCM showed the strongest antimicrobial activity against Staphylococcus bacteria. Due to the liberation of phenolics from the cell wall matrix the antioxidant activity measured as radical scavenging activity was also increased on average about 30% by the enzymatic treatments. The highest increase in phenolic compounds was about 40%. Highest increases in anthocyanins and in antioxidant activity were observed in berry mash treated with Pectinex Smash XXL enzyme, and the lowest increase was observed after treatment with Pectinex BE 3-L. Enzyme-assisted processing is traditionally used to improve berry and fruit juice yields. However, enzymatic treatments also have an impact on the functional properties of the products. The increased liberation of phenolics from the cell wall matrix can prolong the shelf life of berry products by limiting the growth of contaminants during processing or storage. The increased amount of phenolic compounds may also have a positive effect on gut well-being.


Molecular Nutrition & Food Research | 2013

Effects of ellagitannin‐rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome

Riitta Puupponen-Pimiä; Tuulikki Seppänen-Laakso; Matti Kankainen; Johanna Maukonen; Riitta Törrönen; Marjukka Kolehmainen; Tiina Leppänen; Eeva Moilanen; Liisa Nohynek; Anna-Marja Aura; Kaisa Poutanen; Francisco A. Tomás-Barberán; Juan Carlos Espín; Kirsi-Marja Oksman-Caldentey

Ellagitannins are polyphenols abundant in strawberries, raspberries, and cloudberries. The effects of a mixture of these berries were studied in a randomized controlled trial with subjects having symptoms of metabolic syndrome. The study focused on serum lipid profiles, gut microbiota, and ellagitannin metabolites. The results indicate that bioavailability of ellagitannins appears to be dependent on the composition of gut microbiota.

Collaboration


Dive into the Riitta Puupponen-Pimiä's collaboration.

Top Co-Authors

Avatar

Kirsi-Marja Oksman-Caldentey

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Liisa Nohynek

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Anna-Marja Aura

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Kaisa Poutanen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanna-Leena Alakomi

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Heiko Rischer

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tuulikki Seppänen-Laakso

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge