Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rik Van Deun is active.

Publication


Featured researches published by Rik Van Deun.


Journal of Materials Chemistry | 2003

Near-infrared photoluminescence of lanthanide-doped liquid crystals

Rik Van Deun; Dries Moors; Brecht De Fré; Koen Binnemans

The first near-infrared photoluminescent liquid-crystalline material has been made by doping the nematic liquid-crystalline matrix MBBA with the lanthanide(III) β-diketonate complexes [Nd(dbm)3(phen)], [Er(dbm)3(phen)] and [Yb(dbm)3(phen)], respectively. The photoluminescence intensity of the ytterbium(III) sample increases by 100% when the isotropic phase is cooled to the nematic phase.


Inorganic Chemistry | 2012

Speciation of Copper(II) Complexes in an Ionic Liquid Based on Choline Chloride and in Choline Chloride/Water Mixtures

Peter De Vreese; Neil R. Brooks; Kristof Van Hecke; Luc Van Meervelt; Edward Matthijs; Koen Binnemans; Rik Van Deun

A deep-eutectic solvent with the properties of an ionic liquid is formed when choline chloride is mixed with copper(II) chloride dihydrate in a 1:2 molar ratio. EXAFS and UV-vis-near-IR optical absorption spectroscopy have been used to compare the coordination sphere of the cupric ion in this ionic liquid with that of the cupric ion in solutions of 0.1 M of CuCl(2)·2H(2)O in solvents with varying molar ratios of choline chloride and water. The EXAFS data show that species with three chloride ions and one water molecule coordinated to the cupric ion as well as species with two chloride molecules and two water molecules coordinated to the cupric ion are present in the ionic liquid. On the other hand, a fully hydrated copper(II) ion is formed in an aqueous solution free of choline chloride, and the tetrachlorocuprate(II) complex forms in aqueous choline chloride solutions with more than 50 wt % of choline chloride. In solutions with between 0 and 50 wt % of choline chloride, mixed chloro-aquo complexes occur. Upon standing at room temperature, crystals of CuCl(2)·2H(2)O and of Cu(choline)Cl(3) formed in the ionic liquid. Cu(choline)Cl(3) is the first example of a choline cation coordinating to a transition-metal ion. Crystals of [choline](3)[CuCl(4)][Cl] and of [choline](4)[Cu(4)Cl(10)O] were also synthesized from molecular or ionic liquid solvents, and their crystal structures were determined.


Inorganic Chemistry | 2010

Uranyl Complexes of Carboxyl-Functionalized Ionic Liquids

Peter Nockemann; Rik Van Deun; Ben Thijs; Diederik Huys; Evert Vanecht; Kristof Van Hecke; Luc Van Meervelt; Koen Binnemans

Uranium(VI) oxide has been dissolved in three different ionic liquids functionalized with a carboxyl group: betainium bis[(trifluoromethyl)sulfonyl]imide, 1-(carboxymethyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, and N-(carboxymethyl)-N-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide. The dissolution process results in the formation of uranyl complexes with zwitterionic carboxylate ligands and bis[(trifluoromethyl)sulfonyl]imide (bistriflimide) counterions. An X-ray diffraction study on single crystals of the uranyl complexes revealed that the crystal structure strongly depends on the cationic core appended to the carboxylate groups. The betainium ionic liquid gives a dimeric uranyl complex, the imidazolium ionic liquid a monomeric complex, and the pyrrolidinium ionic liquid a one-dimensional polymeric uranyl complex. Extended X-ray absorption fine structure measurements have been performed on the betainium uranyl complex. The absorption and luminescence spectra of the uranyl betainium complex have been studied in the solid state and dissolved in water, in acetonitrile, and in the ionic liquid betainium bistriflimide. The carboxylate groups remain coordinated to uranyl in acetonitrile and in betainium bistriflimide but not in water.


Chemistry: A European Journal | 2009

Speciation of Rare‐Earth Metal Complexes in Ionic Liquids: A Multiple‐Technique Approach

Peter Nockemann; Ben Thijs; Kyra Lunstroot; Tatjana N. Parac-Vogt; Christiane Görller-Walrand; Koen Binnemans; Kristof Van Hecke; Luc Van Meervelt; Sergey I. Nikitenko; John E. Daniels; Christoph Hennig; Rik Van Deun

The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf(2)N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu(2)(bet)(8)(H(2)O)(4)][Tf(2)N](6), [Eu(2)(bet)(8)(H(2)O)(2)][Tf(2)N](6) x 2 H(2)O, and [Y(2)(bet)(6)(H(2)O)(4)][Tf(2)N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf(2)N] and [C(4)mim][Tf(2)N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, (1)H, (13)C, and (89)Y NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.


Journal of the American Chemical Society | 2008

Hydrolytic cleavage of an RNA-model phosphodiester catalyzed by a highly negatively charged polyoxomolybdate [Mo7O24]6- cluster.

Gregory Absillis; Els Cartuyvels; Rik Van Deun; Tatjana N. Parac-Vogt

Hydrolysis of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNP), a commonly used RNA model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR, Raman, and Mo K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. (1)H and (31)P NMR spectroscopy indicate that at 50 degrees C and pD 5.9 the cleavage of the phosphodiester bond in HPNP proceeds with a rate constant of 6.62 x 10(-6) s(-1), giving a cyclic phosphate ester and p-nitrophenol as the only products of hydrolysis. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphodiester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed at pD 5.9. Comparison of the rate profile with the concentration profile of polyoxomolybdates shows a striking overlap of the k(obs) profile with the concentration of heptamolybdate, suggesting that the highly negatively charged [Mo(7)O(24)](6-) is the hydrolytically active species. Kinetic experiments at pD 5.9 using a fixed amount of [Mo(7)O(24)](6-) and increasing amounts of HPNP revealed slight signs of curvature at 25 molar excess of HPNP. The data fit the general Michaelis-Menten reaction scheme, permitting the calculation of the catalytic rate constant k(2) (3.02 x 10(-4) s(-1)) and K(m) (1.06 M). Variable temperature (31)P NMR spectra of a reaction mixture revealed broadening of the HPNP (31)P resonance upon increase of temperature, implying the dynamic exchange process between free and bound HPNP at higher temperatures. Addition of salts resulted in the inhibition of HPNP hydrolysis, as well as addition of dimethyl phosphate, suggesting competition for the binding to [Mo(7)O(24)](6-). The hydrolysis of 10 equiv of HPNP could be achieved in the presence of 1 equiv of [Mo(7)O(24)](6-), and the multiple turnovers demonstrate that the reaction is catalytic. (31)P NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolysis indicated that under catalytic conditions a partial conversion of [Mo(7)O(24)](6-) into [P(2)Mo(5)O(23)](6-) occurs.


Physical Chemistry Chemical Physics | 2003

Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium(III) quinolinates in non-deuterated DMSO

Rik Van Deun; Pascal Fias; Kris Driesen; Koen Binnemans; Christiane Görller-Walrand

Substitution of the hydrogen atoms in the 5- and 7-positions of the quinoline moiety by halogen atoms (Cl and Br) increases the near-infrared (NIR) photoluminescence intensity of the trivalent erbium ion by 30%.


Inorganic Chemistry | 2014

Enhanced Luminescence in Ln3+-Doped Y2WO6 (Sm, Eu, Dy) 3D Microstructures through Gd3+ Codoping

Anna M. Kaczmarek; Kristof Van Hecke; Rik Van Deun

Microstructures of Y2WO6 were prepared by applying a hydrothermal synthesis in the presence of sodium dodecyl sulfate (SDS) surfactant, after which the materials were heat-treated at a temperature of 1100 °C. When prepared at pH 3, the spherical 3D microstructures were built from nanosized particles. Raising the pH gave materials built from differently shaped building blocks, which influenced the final architecture. These materials, similarly to other previously investigated and reported rare-earth tungstate materials, were found to show very interesting luminescence properties. However, quantum yield (QY) values have scarcely been reported for such materials. In this work, a detailed study of the photoluminescence characteristics, decay times, and quantum yields of Y2WO6 doped with Sm(3+), Eu(3+), and Dy(3+) is presented. When doped with different concentrations of Ln(3+) ions, the luminescence properties of the samples changed. The 2.5% Dy:Y2WO6 sample gave white-light emission and showed a QY of 17%. For the optimal lanthanide-ion concentrations, the systems were codoped with 2% and 10% Gd(3+) ions to test the possible enhancement of luminescence through energy transfer from W-O and/or Gd(3+) to Ln(3+). The Eu(3+),Gd(3+)-codoped system showed QYs as high as 79%. The Sm,Gd-codoped system showed the highest enhancement of QY. After incorporation of Gd(3+) ions, the 2.5% Sm_10% Gd:Y2WO6 materials showed a QY approximately 2.4 times larger than that of the 2.5% Sm:Y 2WO6 material.


Inorganic Chemistry | 2011

Polyoxomolybdate Promoted Hydrolysis of a DNA-Model Phosphoester Studied by NMR and EXAFS Spectroscopy

Gregory Absillis; Rik Van Deun; Tatjana N. Parac-Vogt

Hydrolysis of (p-nitrophenyl)phosphate (NPP), a commonly used phosphatase model substrate, was examined in molybdate solutions by means of (1)H, (31)P, and (95)Mo NMR spectroscopy and Mo K-edge Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. At 50 °C and pD 5.1 the cleavage of the phosphoester bond in NPP proceeds with a rate constant of 2.73 × 10(-5) s(-1) representing an acceleration of nearly 3 orders of magnitude as compared to the hydrolysis measured in the absence of molybdate. The pD dependence of k(obs) exhibits a bell-shaped profile, with the fastest cleavage observed in solutions where [Mo(7)O(24)](6-) is the major species in solution. Mixing of NPP and [Mo(7)O(24)](6-) resulted in formation of these two intermediate complexes that were detected by (31)P NMR spectroscopy. Complex A was characterized by a (31)P NMR resonance at -4.27 ppm and complex B was characterized by a (31)P NMR resonance at -7.42 ppm. On the basis of the previous results from diffusion ordered NMR spectroscopy, performed with the hydrolytically inactive substrate phenylphosphonate (PhP), the structure of these two complexes was deduced to be (NPP)(2)Mo(5)O(21)(4-) (complex A) and (NPP)(2)Mo(12)O(36)(H(2)O)(6)(4-) (complex B). The pH studies point out that both complexes are hydrolytically active and lead to the hydrolysis of phosphoester bond in NPP. The NMR spectra did not show evidence of any paramagnetic species, excluding the possibility of Mo(VI) reduction to Mo(V), and indicating that the cleavage of the phosphomonoester bond is purely hydrolytic. The Mo K-edge XANES region also did not show any sign of Mo(VI) to Mo(V) reduction during the hydrolytic reaction. (95)Mo NMR and Mo K-edge EXAFS spectra measured during different stages of the hydrolytic reaction showed a gradual disappearance of [Mo(7)O(24)](6-) during the hydrolytic reaction and appearance of [P(2)Mo(5)O(23)](6-), which was the final complex observed at the end of hydrolytic reaction.


Philosophical Transactions of the Royal Society A | 1999

Towards magnetic liquid crystals

Koen Binnemans; Duncan W. Bruce; Simon R. Collinson; Rik Van Deun; Yury G. Galyametdinov; Françoise Martin

In this paper, we present the results of studies on the synthesis and properties of a series of liquid–crystalline lanthanide complexes of imine ligands. We describe the liquid–crystalline behaviour as a function of the metal, ligand and anion employed and we report on the nature of the coordination between different ligand types and the metal centre.


Molecular Plant | 2013

A Fluorescent Alternative to the Synthetic Strigolactone GR24

Amanda Rasmussen; Thomas S. A. Heugebaert; Cedrick Matthys; Rik Van Deun; François-Didier Boyer; Sofie Goormachtig; Christian V. Stevens; Danny Geelen

Strigolactones have recently been implicated in both above- and below-ground developmental pathways in higher plants. To facilitate the molecular and chemical properties of strigolactones in vitro and in vivo, we have developed a fluorescent strigolactone molecule, CISA-1, synthesized via a novel method which was robust, high-yielding, and used simple starting materials. We demonstrate that CISA-1 has a broad range of known strigolactone activities and further report on an adventitious rooting assay in Arabidopsis which is a highly sensitive and rapid method for testing biological activity of strigolactone analogs. In this rooting assay and the widely used Orobanche germination assay, CISA-1 showed stronger biological activity than the commonly tested GR24. CISA-1 and GR24 were equally effective at inhibiting branching in Arabidopsis inflorescence stems. In both the branching and adventitious rooting assay, we also demonstrated that CISA-1 activity is dependent on the max strigolactone signaling pathway. In water methanol solutions, CISA-1 was about threefold more stable than GR24, which may contribute to the increased activity observed in the various biological tests.

Collaboration


Dive into the Rik Van Deun's collaboration.

Researchain Logo
Decentralizing Knowledge