Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rika Umemiya-Shirafuji is active.

Publication


Featured researches published by Rika Umemiya-Shirafuji.


Journal of Insect Physiology | 2010

Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development.

Damdinsuren Boldbaatar; Rika Umemiya-Shirafuji; Min Liao; Tetsuya Tanaka; Xuenan Xuan; Kozo Fujisaki

Ovarian development and egg maturation are crucial processes for the success of reproduction in ticks. Three full-length cDNAs encoding the precursor of major yolk protein, vitellogenin, were obtained from cDNA libraries of the Haemaphysalis longicornis tick and designated as HlVg-1, HlVg-2 and HlVg-3. The HlVg mRNAs were found in fed females with major expression sites in the midgut, fat body and ovary. Native PAGE and Western blot demonstrated that HlVgs in the hemolymph, fat body and ovary of fed females consisted of four major polypeptides. RNAi results showed that HlVg dsRNA-injected ticks obtained lower body weight, egg weight and showed higher mortality of engorged females after blood sucking than control groups. Our results indicate that all HlVgs are essential for egg development and oviposition.


Autophagy | 2010

Autophagy and its physiological relevance in arthropods: Current knowledge and perspectives

Davide Malagoli; Fábio Camargo Abdalla; Yang Cao; Qili Feng; Kozo Fujisaki; Gregorc A; Tomohide Matsuo; Ioannis P. Nezis; Issidora S. Papassideri; Miklós Sass; Elaine C.M. Silva-Zacarin; Gianluca Tettamanti; Rika Umemiya-Shirafuji

Autophagic process is one of the best examples of a conserved mechanism of survival in eukaryotes. At the molecular level there are impressive similarities between unicellular and multicellular organisms, but there is increasing evidence that the same process may be used for different ends, i.e., survival or death, at least at cellular levels. Arthropods encompass a wide variety of invertebrates such as insects, crustaceans and spiders, and thus represent the taxon in which most of the investigations on autophagy in non-mammalian models are performed. The present review is focused on the genetic basis and the physiological meaning of the autophagic process on key models of arthropods. The involvement of autophagy in programmed cell death, especially during oogenesis and development, is also discussed.


The Journal of Experimental Biology | 2013

Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis

Remil Linggatong Galay; Kyaw Min Aung; Rika Umemiya-Shirafuji; Hiroki Maeda; Tomohide Matsuo; Hiroaki Kawaguchi; Noriaki Miyoshi; Hiroshi Suzuki; Xuenan Xuan; Masami Mochizuki; Kozo Fujisaki; Tetsuya Tanaka

SUMMARY Ticks are obligate hematophagous parasites and important vectors of diseases. The large amount of blood they consume contains great quantities of iron, an essential but also toxic element. The function of ferritin, an iron storage protein, and iron metabolism in ticks need to be further elucidated. Here, we investigated the function a newly identified secreted ferritin from the hard tick Haemaphysalis longicornis (HlFER2), together with the previously identified intracellular ferritin (HlFER1). Recombinant ferritins, expressed in Escherichia coli, were used for anti-serum preparation and were also assayed for iron-binding activity. RT-PCR and western blot analyses of different organs and developmental stages of the tick during blood feeding were performed. The localization of ferritins in different organs was demonstrated through an indirect immunofluorescent antibody test. RNA interference (RNAi) was performed to evaluate the importance of ferritin in blood feeding and reproduction of ticks. The midgut was also examined after RNAi using light and transmission electron microscopy. RT-PCR showed differences in gene expression in some organs and developmental stages. Interestingly, only HlFER2 was detected in the ovary during oviposition and in the egg despite the low mRNA transcript. RNAi induced a reduction in post-blood meal body weight, high mortality and decreased fecundity. The expression of vitellogenin genes was affected by silencing of ferritin. Abnormalities in digestive cells, including disrupted microvilli, and alteration of digestive activity were also observed. Taken altogether, our results show that the iron storage and protective functions of ferritin are crucial to successful blood feeding and reproduction of H. longicornis.


Autophagy | 2010

Increased expression of ATG genes during nonfeeding periods in the tick Haemaphysalis longicornis

Rika Umemiya-Shirafuji; Tomohide Matsuo; Min Liao; Damdinsuren Boldbaatar; Banzragch Battur; Hiroshi Suzuki; Kozo Fujisaki

Ticks are long-lived hematophagous arthropods and have tolerance to starvation. They can survive without food during the host-seeking period for several months to years. To understand how ticks obtain energy over a long period of non-feeding (starvation), we focused on autophagy, a crucial proteolysis system via the lysosomes for various cellular processes that is induced during starvation in eukaryotes. In the present study, EST databases for several organs of the tick Haemaphysalis longicornis led to the identification of HlATG3, HlATG4 and HlATG8, homologues of 3 autophagy-related (ATG) genes, ATG3, ATG4 and ATG8/LC3/GABARAP, respectively, which are essential for the Atg8 conjugation system in model animals. Real-time PCR results revealed that the expression of HlATG3, HlATG4 and HlATG8 in the tick showed higher levels during the non-feeding period than the feeding period, suggesting that the Atg8 conjugation system is at work in unfed ticks. Notably, their expression levels were higher in the midgut, a digestive organ, of unfed than fed adults. Histological analysis demonstrated that lipids and glycogen accumulated within the epithelial cells of the midgut in unfed ticks, implying that the midgut of unfed ticks serves as storage of those components as nutrients during non-feeding. Furthermore, autophagic organelles were found in the midgut undifferentiated cells of unfed ticks. The starved condition appears to be associated with the increased expression of HlATG genes in the midgut of unfed ticks. Tick autophagy might help compensate for the loss of nutrients derived from host blood components during the non-feeding period.


In Vitro Cellular & Developmental Biology – Animal | 2010

Parasiticidal activity of human α-defensin-5 against Toxoplasma gondii

Tetsuya Tanaka; Md. Morshedur Rahman; Banzragch Battur; Damdinsuren Boldbaatar; Min Liao; Rika Umemiya-Shirafuji; Xuenan Xuan; Kozo Fujisaki

Human defensins play a fundamental role in the initiation of innate immune responses to some microbial pathogens. In this paper, we show that human α-defensin-5 displays a parasiticidal role against Toxoplasma gondii, the causative agent of toxoplasmosis. Exposure of the tachyzoite form of T. gondii to defensin induced aggregation and significantly reduced parasite viability in a concentration-dependent peptide. Pre-incubation of tachyzoites with human α-defensin-5 followed by exposure to a mouse embryonal cell line (NIH/3T3) significantly reduced T. gondii infection in these cells. Thus, human α-defensin-5 is an innate immune molecule that causes severe toxocity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that human α-defensin-5 causes aggregation, leading to Toxoplasma destruction.


PLOS ONE | 2011

Scavenger Receptor Mediates Systemic RNA Interference in Ticks

Kyaw Min Aung; Damdinsuren Boldbaatar; Rika Umemiya-Shirafuji; Min Liao; Xuan Xuenan; Hiroshi Suzuki; Remil Linggatong Galay; Tetsuya Tanaka; Kozo Fujisaki

RNA interference is an efficient method to silence gene and protein expressions. Here, the class B scavenger receptor CD36 (SRB) mediated the uptake of exogenous dsRNAs in the induction of the RNAi responses in ticks. Unfed female Haemaphysalis longicornis ticks were injected with a single or a combination of H. longicornis SRB (HlSRB) dsRNA, vitellogenin-1 (HlVg-1) dsRNA, and vitellogenin receptor (HlVgR) dsRNA. We found that specific and systemic silencing of the HlSRB, HlVg-1, and HlVgR genes was achieved in ticks injected with a single dsRNA of HlSRB, HlVg-1, and HlVgR. In ticks injected first with HlVg-1 or HlVgR dsRNA followed 96 hours later with HlSRB dsRNA (HlVg-1/HlSRB or HlVgR/HlSRB), gene silencing of HlSRB was achieved in addition to first knockdown in HlVg-1 or HlVgR, and prominent phenotypic changes were observed in engorgement, mortality, and hatchability, indicating that a systemic and specific double knockdown of target genes had been simultaneously attained in these ticks. However, in ticks injected with HlSRB dsRNA followed 96 hours later with HlVg-1 or HlVgR dsRNAs, silencing of HlSRB was achieved, but no subsequent knockdown in HlVgR or HlVg-1 was observed. The Westernblot and immunohistochemical examinations revealed that the endogenous HlSRB protein was fully abolished in midguts of ticks injected with HlSRB/HlVg-1 dsRNAs but HlVg-1 was normally expressed in midguts, suggesting that HlVg-1 dsRNA-mediated RNAi was fully inhibited by the first knockdown of HlSRB. Similarly, the abolished localization of HlSRB protein was recognized in ovaries of ticks injected with HlSRB/HlVgR, while normal localization of HlVgR was observed in ovaries, suggesting that the failure to knock-down HlVgR could be attributed to the first knockdown of HlSRB. In summary, we demonstrated for the first time that SRB may not only mediate the effective knock-down of gene expression by RNAi but also play essential roles for systemic RNAi of ticks.


Tropical Animal Health and Production | 2012

Anti-babesial activity of a potent peptide fragment derived from longicin of Haemaphysalis longicornis

Remil Linggatong Galay; Hiroki Maeda; Kyaw Min Aung; Rika Umemiya-Shirafuji; Xuenan Xuan; Ikuo Igarashi; Naotoshi Tsuji; Tetsuya Tanaka; Kozo Fujisaki

Babesiosis is one of the most important tick-borne diseases affecting livestock that can cause major economic losses worldwide particularly in the tropics. Control relies on controlling both the protozoan parasite and the tick vector. Antiprotozoal drugs are most commonly used for treatment, but problems on emergence of resistant strains and food residues are encountered. Longicin, a defensin-like peptide identified from the hard tick, Haemapysalis longicornis, as well as one of its synthetic partial analogs (P4), were previously reported to exert antimicrobial, fungicidal, and parasiticidal activity. Both longicin and P4 showed babesiacidal activity, in vitro and in vivo. Here, peptide fragments of P4 were studied for in vitro activity against bovine Babesia parasites. One of the peptide fragments, antimicrobial peptide 1 (AMP1), reduced the parasitemia of Babesia bigemina. No peptide had significant effect on Babesia bovis. The sequence of AMP1 corresponded to the longicin sequence which is associated with antiparasitic activity. Although AMP1 caused reduction in parasitemia of B. bigemina, the difference in morphology of the parasite compared with the control group was not statistically significant. However, the percentage occurrence of piroplasms decreased, whereas the abnormal pycnotic form increased. The results demonstrated that this shorter peptide retained the anti-babesial activity of the parent peptide, exerting an antiparasitic effect against a bovine Babesia species. Therefore, this short peptide can be considered for chemical synthesis as an alternative therapeutic agent for babesiosis.


Parasitology International | 2015

Iron metabolism in hard ticks (Acari: Ixodidae): The antidote to their toxic diet

Remil Linggatong Galay; Rika Umemiya-Shirafuji; Masami Mochizuki; Kozo Fujisaki; Tetsuya Tanaka

Ticks are notorious parasitic arthropods, known for their completely host-blood-dependent lifestyle. Hard ticks (Acari: Ixodidae) feed on their hosts for several days and can ingest blood more than a hundred times their unfed weight. Their blood-feeding habit facilitates the transmission of various pathogens. It is remarkable how hard ticks cope with the toxic nature of their blood meal, which contains several molecules that can promote oxidative stress including iron. While it is required in several physiological processes, high amounts of iron can be dangerous because iron can also participate in the formation of free radicals that may cause cellular damage and death. Here we review the current knowledge on heme and inorganic iron metabolism in hard ticks and compare it with that in vertebrates and other arthropods. We briefly discuss the studies on heme transport, storage and detoxification, and the transport and storage of inorganic iron, with emphasis on the functions of tick ferritins. This review points out other aspects of tick iron metabolism that warrant further investigation, as compared to mammals and other arthropods. Further understanding of this physiological process may help in formulating new control strategies for tick infestation and the spread of tick-borne diseases.


Parasites & Vectors | 2014

Evaluation and comparison of the potential of two ferritins as anti-tick vaccines against Haemaphysalis longicornis

Remil Linggatong Galay; Takeshi Miyata; Rika Umemiya-Shirafuji; Hiroki Maeda; Kodai Kusakisako; Naotoshi Tsuji; Masami Mochizuki; Kozo Fujisaki; Tetsuya Tanaka

BackgroundTick control is an essential aspect of controlling the spread of tick-borne diseases affecting humans and animals, but it presently faces several challenges. Development of an anti-tick vaccine is aimed at designing cost-effective and environmentally friendly protection against ticks and tick-borne diseases as an alternative to the use of chemical acaricides. A single vaccine from the tick midgut protein Bm86 is currently available for field applications, but its efficacy is limited to only some tick species. Identification of candidate vaccine antigens that can affect multiple tick species is highly desirable. The hard tick Haemaphysalis longicornis has two kinds of the iron-binding protein ferritin (HlFER), an intracellular HlFER1 and a secretory HlFER2, and RNA interference experiments showed that these are physiologically important in blood feeding and reproduction and in protection against oxidative stress. Here we investigated the potential of targeting HlFERs for tick control by immunizing the host with recombinant HlFERs (rHlFER1 and rHlFER2).MethodsRabbits were immunized with rHlFERs three times subcutaneously at two-week intervals. Antisera were collected before the first immunization and a week after each immunization to confirm the antigen-specific serum antibody titer by serum ELISA. Two weeks after the final immunization, the rabbits were challenged with tick infestation. After dropping, tick feeding and reproduction parameters were evaluated to determine vaccine efficacy. To demonstrate the effects of antibodies, oxidative stress was detected in the eggs and larvae.ResultsThe antibody titer of rHlFER-immunized rabbits greatly increased after the second immunization. Antibodies exhibited cross-reactivity with rHlFERs and reacted with tick native HlFERs in Western blot analysis. Significantly lower bodyweight was observed in the ticks infested from the rHlFER2-immunized rabbit compared to those from the control rabbit. Reduced oviposition and hatching rate were observed in both rHlFER-immunized groups. rHlFER2 showed a higher vaccine efficacy. The antibodies against rHlFERs were detected in the eggs, and higher levels of oxidative stress biomarkers in the eggs and larvae, of ticks from rHlFER vaccinated rabbits.ConclusionCollectively, these results showed that HlFER2 has a good potential as an anti-tick vaccine antigen that may affect multiple tick species.


Peptides | 2012

Parasiticidal activity of Haemaphysalis longicornis longicin P4 peptide against Toxoplasma gondii

Tetsuya Tanaka; Hiroki Maeda; Tomohide Matsuo; Damdinsuren Boldbattar; Rika Umemiya-Shirafuji; Aiko Kume; Hiroshi Suzuki; Xuenan Xuan; Naotoshi Tsuji; Kozo Fujisaki

The Haemaphysalis longicornis longicin P4 peptide is an active part peptide produced by longicin which displays bactericidal activity against both Gram-negative and Gram-positive bacteria and other microorganisms. In the present study, the effect of the longicin P4 peptide on the infectivity of Toxoplasma gondii parasites was examined in vitro. Tachyzoites of T. gondii incubated with longicin P4 had induced aggregation and lost the trypan blue dye exclusion activity and the invasion ability into the mouse embryonal cell line (NIH/3T3). Longicin P4 bound to T. gondii tachyzoites, as demonstrated by fluoresce microscopic analysis. An electron microscopic analysis and a fluorescence propidium iodide exclusion assay of tachyzoites exposed to longicin P4 revealed pore formation in the cellular membrane, membrane disorganization, and hollowing as well as cytoplasmic vacuolization. The number of tachyzoites proliferated in mouse macrophage cell line (J774A.1) was significantly decreased by incubation with longicin P4. These findings suggested that longicin P4 conceivably impaired parasite membranes, leading to the destruction of Toxoplasma parasites in J774A.1 cells. Thus, longicin P4 is an interesting candidate for antitoxoplasmosis drug design that causes severe toxicity to T. gondii and plays an important role in reducing cellular infection. This is the first report showing that longicin P4 causes aggregation and membrane injury of parasites, leading to Toxoplasma tachyzoite destruction.

Collaboration


Dive into the Rika Umemiya-Shirafuji's collaboration.

Top Co-Authors

Avatar

Kozo Fujisaki

Zen noh Institute of Animal Health

View shared research outputs
Top Co-Authors

Avatar

Tetsuya Tanaka

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Remil Linggatong Galay

University of the Philippines Los Baños

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge