Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rika Yasuhara is active.

Publication


Featured researches published by Rika Yasuhara.


Biochemical Journal | 2005

Interleukin-1β induces death in chondrocyte-like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependent manner

Rika Yasuhara; Yoichi Miyamoto; Takaaki Akaike; Teruo Akuta; Masanori Nakamura; Masamichi Takami; Naoko Morimura; Kayoko Yasu; Ryutaro Kamijo

IL-1 (interleukin-1) acts as a key mediator of the degeneration of articular cartilage in RA (rheumatoid arthritis) and OA (osteoarthritis),where chondrocyte death is observed. It is still controversial, however, whether IL-1 induces chondrocyte death. In the present study, the viability of mouse chondrocyte-like ATDC5 cells was reduced by the treatment with IL-1beta for 48 h or longer. IL-1beta augmented the expression of the catalytic gp91 subunit of NADPH oxidase, gp91phox, as well as inducible NO synthase in ATDC5 cells. Generation of nitrated guanosine and tyrosine suggested the formation of reactive nitrogen species including ONOO- (peroxynitrite), a reaction product of NO and O2-, in ATDC5 cells and rat primary chondrocytes treated with IL-1beta. Death of ATDC5 cells after IL-1beta treatment was prevented by an NADPH-oxidase inhibitor, AEBSF[4-(2-aminoethyl)benzene-sulphonyl fluoride], an NO synthase inhibitor, L-NAME (NG-nitro-L-arginine methyl ester), and a ONOO- scavenger, uric acid. The viability of ATDC5 cells was reduced by the ONOO(-)-generator 3-(4-morpholinyl)sydnonimine hydrochloride, but not by either the NO-donor 1-hydroxy-2-oxo-3-(N-methyl-2-aminopropyl)-3-methyl-1-triazene or S-nitrosoglutathione. Disruption of mitochondrial membrane potential and ATP deprivation were observed in IL-1beta-treated ATDC5 cells, both of which were restored by L-NAME, AEBSF or uric acid. On the other hand, no morphological or biochemical signs indicating apoptosis were observed in these cells. These results suggest that the death of chondrocyte-like ATDC5 cells was mediated at least in part by mitochondrial dysfunction and energy depletion through ONOO- formation after IL-1beta treatment.


Journal of Biological Chemistry | 2010

Wnt/β-Catenin and Retinoic Acid Receptor Signaling Pathways Interact to Regulate Chondrocyte Function and Matrix Turnover

Rika Yasuhara; Takahito Yuasa; Julie A. Williams; Stephen W. Byers; Salim Shah; Maurizio Pacifici; Masahiro Iwamoto; Motomi Enomoto-Iwamoto

Activation of the Wnt/β-catenin and retinoid signaling pathways is known to tilt cartilage matrix homeostasis toward catabolism. Here, we investigated possible interactions between these pathways. We found that all-trans-retinoic acid (RA) treatment of mouse epiphyseal chondrocytes in culture did increase Wnt/β-catenin signaling in the absence or presence of exogenous Wnt3a, as revealed by lymphoid enhancer factor/T-cell factor/β-catenin reporter activity and β-catenin nuclear accumulation. This stimulation was accompanied by increased gene expression of Wnt proteins and receptors and was inhibited by co-treatment with Dickkopf-related protein-1, an extracellular inhibitor of Wnt/β-catenin signaling, suggesting that RA modulates Wnt signaling at Wnt cell surface receptor level. RA also enhanced matrix loss triggered by Wnt/β-catenin signaling, whereas treatment with a retinoid antagonist reduced it. Interestingly, overexpression of retinoic acid receptor γ (RARγ) strongly inhibited Wnt/β-catenin signaling in retinoid-free cultures, whereas small interfering RNA-mediated silencing of endogenous RARγ expression strongly increased it. Small interfering RNA-mediated silencing of RARα or RARβ had minimal effects. Co-immunoprecipitation and two-hybrid assays indicated that RARγ interacts with β-catenin and induces dissociation of β-catenin from lymphoid enhancer factor in retinoid-free cultures. The N-terminal domain (AF-1) of RARγ but not the C-terminal domain (AF-2) was required for association with β-catenin, whereas both AF-1 and AF-2 were necessary for inhibition of β-catenin transcriptional activity. Taken together, our data indicate that the Wnt and retinoid signaling pathways do interact in chondrocytes, and their cross-talks and cross-regulation play important roles in the regulation of cartilage matrix homeostasis.


American Journal of Pathology | 2009

Transient Activation of Wnt/β-Catenin Signaling Induces Abnormal Growth Plate Closure and Articular Cartilage Thickening in Postnatal Mice

Takahito Yuasa; Naoki Kondo; Rika Yasuhara; Kengo Shimono; Susan Mackem; Maurizio Pacifici; Masahiro Iwamoto; Motomi Enomoto-Iwamoto

Wnt/beta-catenin signaling is required for skeletal development and organization and for function of the growth plate and articular cartilage. To further clarify these roles and their possible pathophysiological importance, we created a new transgenic mouse model in which Wnt/beta-catenin signaling can be activated in cartilage for specific periods of time. These transgenic mice expressed a constitutive active form of beta-catenin fused to a modified estrogen receptor ligand-binding domain under the control of cartilage-specific collagen 11alpha2 promoter/enhancer. Transient Wnt/beta-catenin signaling activation in young adult mice by tamoxifen injections induced growth retardation and severe deformities in knee joints. Tibial and femoral growth plates displayed an excessive number of apoptotic cells and eventually underwent abnormal regression. Articular cartilage exhibited an initial acute loss of proteoglycan matrix that was followed by increases in thickness, cell density, and cell proliferation. In reciprocal studies, we found that conditional ablation of beta-catenin in postnatal mice using a Col2-CreER strategy led to hypocellularity in articular cartilage, growth plate disorganization, and a severe reduction in bone volume. Together, these data provide evidence that Wnt/beta-catenin signaling has important and distinct roles in growth plate and articular cartilage and that postnatal dysregulation of this signaling pathway causes diverse structural and functional changes in the two cartilaginous structures.


Immunology | 2007

Interleukin‐4 inhibition of osteoclast differentiation is stronger than that of interleukin‐13 and they are equivalent for induction of osteoprotegerin production from osteoblasts

Atsushi Yamada; Masamichi Takami; Tadaharu Kawawa; Rika Yasuhara; Baohong Zhao; Ayako Mochizuki; Yoichi Miyamoto; Tomoo Eto; Hisataka Yasuda; Yuko Nakamichi; Nacksung Kim; Takenobu Katagiri; Tatsuo Suda; Ryutaro Kamijo

Interleukin (IL)‐4 and IL‐13 are closely related cytokines known to inhibit osteoclast formation by targeting osteoblasts to produce an inhibitor, osteoprotegerin (OPG), as well as by directly targeting osteoclast precursors. However, whether their inhibitory actions are the same remains unclear. The inhibitory effect of IL‐4 was stronger than that of IL‐13 in an osteoclast‐differentiation culture system containing mouse osteoblasts and osteoclast precursors. Both cytokines induced OPG production by osteoblasts in similar time‐ and dose‐dependent manners. However, IL‐4 was stronger in direct inhibition that targeted osteoclast precursors. Furthermore, IL‐4 induced phosphorylation of signal transducer and activator of transcription‐6 (STAT6) at lower concentrations than those of IL‐13 in osteoclast precursors. IL‐4 but not IL‐13 strongly inhibited the expression of nuclear factor of activated T‐cells, cytoplasmic 1 (nuclear factor‐ATc1), a key factor of osteoclast differentiation, by those precursors. Thus, the activities of IL‐4 and IL‐13 toward osteoclast precursors were shown to be different in regards to inhibition of osteoclast differentiation, whereas those toward osteoblasts for inducing OPG expression were equivalent.


Developmental Biology | 2009

Essential mesenchymal role of small GTPase Rac1 in interdigital programmed cell death during limb development.

Dai Suzuki; Atsushi Yamada; Takanori Amano; Rika Yasuhara; Ayako Kimura; Mizuho Sakahara; Noriyuki Tsumaki; Shu Takeda; Masaru Tamura; Masanori Nakamura; Naoyuki Wada; Tsutomu Nohno; Toshihiko Shiroishi; Atsu Aiba; Ryutaro Kamijo

Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.


Journal of Immunology | 2006

Identification and Characterization of the Precursors Committed to Osteoclasts Induced by TNF-Related Activation-Induced Cytokine/Receptor Activator of NF-κB Ligand

Ayako Mochizuki; Masamichi Takami; Tadaharu Kawawa; Reina Suzumoto; Takahisa Sasaki; Akihiko Shiba; Hiroaki Tsukasaki; Baohong Zhao; Rika Yasuhara; Tetsuo Suzawa; Yoichi Miyamoto; Yongwon Choi; Ryutaro Kamijo

Osteoclasts are terminally differentiated from cells of monocyte/macrophage lineage by stimulation with TNF-related activation-induced cytokine (TRANCE) (receptor activator of NF-κB ligand/osteoprotegerin ligand/osteoclast differentiation factor/TNFSF11/CD254). In the present study, we attempted to determine when and how the cell fate of precursors becomes committed to osteoclasts following TRANCE stimulation. Although mouse bone marrow-derived macrophages (BMMs) were able to differentiate into either osteoclasts or dendritic cells, the cells no longer differentiated into dendritic cells after treatment with TRANCE for 24 h, indicating that their cell fate was committed to osteoclasts. Committed cells as well as BMMs were still quite weak in tartrate-resistant acid phosphatase activity, an osteoclast marker, and incorporated zymosan particles by phagocytosis. Interestingly, committed cells, but not BMMs, could still differentiate into osteoclasts even after incorporation of the zymosan particles. Furthermore, IL-4 and IFN-γ, potent inhibitors of osteoclast differentiation, failed to inhibit osteoclast differentiation from committed cells, and blocking of TRANCE stimulation by osteoprotegerin resulted in cell death. Adhesion to culture plates was believed to be essential for osteoclast differentiation; however, committed cells, but not BMMs, differentiated into multinucleated osteoclasts without adhesion to culture plates. Although LPS activated the NF-κB-mediated pathway in BMMs as well as in committed cells, the mRNA expression level of TNF-α in the committed cells was significantly lower than that in BMMs. These results suggest that characteristics of the committed cells induced by TRANCE are distinctively different from that of BMMs and osteoclasts.


Matrix Biology | 2014

Resident mesenchymal progenitors of articular cartilage.

Maria Elena Candela; Rika Yasuhara; Masahiro Iwamoto; Motomi Enomoto-Iwamoto

Articular cartilage has poor capacity of self-renewal and repair. Insufficient number and activity of resident mesenchymal (connective tissue) progenitors is likely one of the underlying reasons. Chondroprogenitors reside not only in the superficial zone of articular cartilage but also in other zones of articular cartilage and in the neighboring tissues, including perichondrium (groove of Ranvier), synovium and fat pad. These cells may respond to injury and contribute to articular cartilage healing. In addition, marrow stromal cells can migrate through subchondral bone when articular cartilage is damaged. We should develop drugs and methods that correctly stimulate resident progenitors for improvement of repair and inhibition of degenerative changes in articular cartilage.


Spine | 2011

Intervertebral disc development is regulated by Wnt/β-catenin signaling.

Naoki Kondo; Takahito Yuasa; Kengo Shimono; Wei-en Tung; Takahiro Okabe; Rika Yasuhara; Maurizio Pacifici; Yejia Zhang; Masahiro Iwamoto; Motomi Enomoto-Iwamoto

Study Design. Histologic analysis of intervertebral disc (IVD) in three types of transgenic mice. Objective. To investigate the role of Wnt/&bgr;-catenin signaling in regulation of IVD development and organization. Summary of Background Data. -catenin dependent Wnt signaling is one of the central regulators in cartilage development during limb skeletal formation. Little is known, however, about the physiologic relevance of this signaling pathway to IVD development and organization. Methods. Temporal-spatial distribution of Wnt/&bgr;-catenin signaling activity was examined in IVD using Wnt/&bgr;-catenin reporter (TOPGAL) mice. The structural changes in the mouse IVD components such as the nucleus pulposus (NP), endplate (EP), annulus fibrosus (AF), and the growth plate (GP) of the vertebral body were analyzed after transient activation of Wnt/&bgr;-catenin signaling or deletion of &bgr;-catenin in the mice. Results. Activity of Wnt/&bgr;-catenin signaling was high in EP, AF, and GP in the embryonic stages and decreased at the postnatal stage; it was undetectable in the embryonic NP but upregulated after birth. The transient activation of Wnt/&bgr;-catenin signaling caused severe deterioration of the GP and the AF, whereas deficiency of &bgr;-catenin accelerated bone formation in between EP and GP. Conclusion. The findings in this study suggest that proper regulation of Wnt/&bgr;-catenin signaling is required for development and organization of IVD.


Biochemical Journal | 2009

Lysine-specific gingipain promotes lipopolysaccharide- and active-vitamin D3-induced osteoclast differentiation by degrading osteoprotegerin.

Rika Yasuhara; Yoichi Miyamoto; Masamichi Takami; Takahisa Imamura; Jan Potempa; Kentaro Yoshimura; Ryutaro Kamijo

Porphyromonas gingivalis is one of the major pathogens of periodontitis, a condition characterized by excessive alveolar bone resorption by osteoclasts. The bacterium produces cysteine proteases called gingipains, which are classified according to their cleavage-site specificity into Kgps (lysine-specific gingipains) and Rgps (arginine-specific gingipains). In the present study we examined the effects of gingipains on osteoclast differentiation. In co-cultures of mouse bone-marrow cells and osteoblasts, formation of multinucleated osteoclasts induced by 1alpha,25(OH)(2)D(3) (1alpha,25-dihydroxyvitamin D(3)) was augmented by Kgp but not by RgpB. A physiological concentration (0.1 nM) of 1alpha,25(OH)(2)D(3) induced the osteoclast formation in the presence of 100 nM Kgp to an extent comparable with that induced by 10 nM 1alpha,25(OH)(2)D(3). Kgp also enhanced osteoclastogenesis induced by various microbial components, including lipopolysaccharide. Combined use of Kgp and 1alpha,25(OH)(2)D(3) or lipopolysaccharide also increased the number of resorption pits developed on dentin slices, indicating that the osteoclasts formed in the presence of Kgp possess bone-resorbing activity. The enhanced osteoclastogenesis by Kgp was correlated with a depletion of osteoprotegerin in co-culture medium and was proteolytic-activity-dependent, since benzyloxycarbonyl-L-phenylalanyl-L-lysylacycloxyketone, an inhibitor of Kgp, completely abolished osteoclastogenesis induced by Kgp. Kgp digested osteoprotegerin, since its recombinant protein was susceptible to degradation by Kgp in the presence of serum. As a result, Kgp did not augment osteoclastogenesis in co-cultures of osteoprotegerin-deficient osteoblasts and bone-marrow cells. In addition, enhanced osteoclastogenesis by Kgp was abolished by an excess amount of recombinant osteoprotegerin. These findings suggest that degradation of osteoprotegerin is one of the mechanisms underlying promotion of osteoclastogenesis by Kgp.


Stem Cells | 2012

Transplantation of side population cells restores the function of damaged exocrine glands through clusterin

Kenji Mishima; Hiroko Inoue; Tatsuaki Nishiyama; Yo Mabuchi; Yusuke Amano; Fumio Ide; Makoto Matsui; Hiroyuki Yamada; Gou Yamamoto; Junichi Tanaka; Rika Yasuhara; Takashi Sakurai; Masaichi Chang Il Lee; Kan Chiba; Hidetoshi Sumimoto; Yutaka Kawakami; Yumi Matsuzaki; Kazuo Tsubota; Ichiro Saito

Stem cell‐based therapy has been proposed as a promising strategy for regenerating tissues lost through incurable diseases. Side population (SP) cells have been identified as putative stem cells in various organs. To examine therapeutic potential of SP cells in hypofunction of exocrine glands, SP cells isolated from mouse exocrine glands, namely, lacrimal and salivary glands, were transplanted into mice with irradiation‐induced hypofunction of the respective glands. The secretions from both glands in the recipient mice were restored within 2 months of transplantation, although the transplanted cells were only sparsely distributed and produced no outgrowths. Consistent with this, most SP cells were shown to be CD31‐positive endothelial‐like cells. In addition, we clarified that endothelial cell‐derived clusterin, a secretory protein, was an essential factor for SP cell‐mediated recovery of the hypofunctioning glands because SP cells isolated from salivary glands of clusterin‐deficient mice had no therapeutic potential, whereas lentiviral transduction of clusterin restored the hypofunction. In vitro and in vivo studies showed that clusterin had an ability to directly inhibit oxidative stress and oxidative stress‐induced cell damage. Thus, endothelial cell‐derived clusterin possibly inhibit oxidative stress‐induced hypofunction of these glands. Stem Cells2012;30:1925–1937

Collaboration


Dive into the Rika Yasuhara's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masahiro Iwamoto

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Motomi Enomoto-Iwamoto

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge