Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rikinari Hanayama is active.

Publication


Featured researches published by Rikinari Hanayama.


Nature | 2002

Identification of a factor that links apoptotic cells to phagocytes

Rikinari Hanayama; Masato Tanaka; Keiko Miwa; Azusa Shinohara; Akihiro Iwamatsu; Shigekazu Nagata

Apoptotic cells are rapidly engulfed by phagocytes to prevent the release of potentially noxious or immunogenic intracellular materials from the dying cells, thereby preserving the integrity and function of the surrounding tissue. Phagocytes engulf apoptotic but not healthy cells, indicating that the apoptotic cells present a signal to the phagocytes, and the phagocytes recognize the signal using a specific receptor. Here, we report a factor that links apoptotic cells to phagocytes. We found that milk fat globule-EGF-factor 8 (MFG-E8), a secreted glycoprotein, was produced by thioglycollate-elicited macrophages. MFG-E8 specifically bound to apoptotic cells by recognizing aminophospholipids such as phosphatidylserine. MFG-E8, when engaged by phospholipids, bound to cells via its RGD (arginine-glycine-aspartate) motif—it bound particularly strongly to cells expressing αvβ3 integrin. The NIH3T3 cell transformants that expressed a high level of αvβ3 integrin were found to engulf apoptotic cells when MFG-E8 was added. MFG-E8 carrying a point mutation in the RGD motif behaved as a dominant-negative form, and inhibited the phagocytosis of apoptotic cells by peritoneal macrophages in vitro and in vivo. These results indicate that MFG-E8 secreted from activated macrophages binds to apoptotic cells, and brings them to phagocytes for engulfment.


Journal of Experimental Medicine | 2004

Masking of Phosphatidylserine Inhibits Apoptotic Cell Engulfment and Induces Autoantibody Production in Mice

Kenichi Asano; Miyu Miwa; Keiko Miwa; Rikinari Hanayama; Hiroko Nagase; Shigekazu Nagata; Masato Tanaka

Apoptotic cells are rapidly phagocytosed by professional phagocytes, such as macrophages and dendritic cells. This process prevents the release of potentially noxious or immunogenic intracellular materials from dying cells, and is thought to play a critical role for the maintenance of normal functions in surrounding tissues. Milk fat globule-EGF-factor 8 (MFG-E8), secreted by activated macrophages and immature dendritic cells, links apoptotic cells and phagocytes, and promotes phagocytosis of apoptotic cells. Here, we report that an MFG-E8 mutant, designated as D89E, carrying a point mutation in an RGD motif, inhibited not only the phagocytosis of apoptotic cells by a wide variety of phagocytes, but also inhibited the enhanced production of IL-10 by thioglycollate-elicited peritoneal macrophages phagocytosing apoptotic cells. When intravenously injected into mice, the D89E protein induced the production of autoantibodies including antiphospholipids antibodies and antinuclear antibodies. The production of autoantibodies was enhanced by the coinjection of syngeneic apoptotic thymocytes. After the induction of autoantibody production by D89E, the treated mice showed a long-term elevation of the titer for autoantibodies, and developed IgG deposition in the glomeruli. These results indicated that the impairment of apoptotic cell phagocytosis led to autoantibody production.


Journal of Biological Chemistry | 2006

Opposite Effects of Rho Family GTPases on Engulfment of Apoptotic Cells by Macrophages

Michio Nakaya; Masato Tanaka; Yasutaka Okabe; Rikinari Hanayama; Shigekazu Nagata

The efficient engulfment of apoptotic cells by professional or nonprofessional phagocytes is critical to maintain mammalian homeostasis. To identify molecules involved in the engulfment of apoptotic cells, we established a retrovirus-based expression cloning system coupled with the engulfment assay. By screening a cDNA library of a mouse macrophage cell line, we identified two small GTPase family members (RhoG and Rab5) that enhanced the engulfment of apoptotic cells. By examining other small GTPase family members, we found that Rac1 enhanced the engulfment of apoptotic cells, whereas RhoA inhibited the process. Accordingly, the expression of a dominant-negative form of RhoG or Rac1 in primary macrophage cultures severely reduced the ability of the macrophages to engulf apoptotic cells, and a dominant-negative form of RhoA enhanced the process. These results indicated that the efficient engulfment of apoptotic cells requires the concerted action of small GTPase family members. We demonstrated previously that NIH3T3 cells expressing the αv β3 integrin efficiently engulf apoptotic cells in the presence of milk fat globule epidermal growth factor 8 via a phosphatidylserine-dependent mechanism. The dominant-negative form of RhoG or Rac1 inhibited this process, which suggested RhoG and Rac1 are also involved in the integrin-mediated engulfment.


Journal of Immunology | 2004

Expression of Developmental Endothelial Locus-1 in a Subset of Macrophages for Engulfment of Apoptotic Cells

Rikinari Hanayama; Masato Tanaka; Keiko Miwa; Shigekazu Nagata

A major function of macrophages is to engulf apoptotic cells to prevent them from releasing noxious materials as they die. Milk fat globule-EGF-factor 8 (MFG-E8) is a glycoprotein secreted by activated macrophages that works as a bridge between apoptotic cells and phagocytes by specifically recognizing phosphatidylserine exposed on apoptotic cells. In this study, we found that developmental endothelial locus-1 (Del-1), originally identified as an embryonic endothelial cell protein that binds αvβ3 integrin, is structurally and functionally homologous to MFG-E8. That is, both consist of a signal sequence, two epidermal growth factor domains and two factor VIII-homologous domains (C1 and C2). Del-1 bound to the apoptotic cells by recognizing phosphatidylserine via the factor VIII-homologous domains with an affinity similar to that of MFG-E8. The phagocytic activity of NIH 3T3 cells against apoptotic cells was enhanced by Del-1 through an interaction between the epidermal growth factor domain in Del-1 and αvβ3 integrin expressed in the NIH 3T3 cells. Screening of primary macrophages and macrophage cell lines for the expression of MFG-E8 and Del-1 indicated that MFG-E8 and Del-1 are expressed in different sets of macrophages. These results suggest the existence of macrophage subsets that use MFG-E8 or Del-1 differently to engulf apoptotic cells.


European Journal of Immunology | 2004

Expression of milk fat globule epidermal growth factor 8 in immature dendritic cells for engulfment of apoptotic cells

Kay Miyasaka; Rikinari Hanayama; Masato Tanaka; Shigekazu Nagata

Milk fat globule epidermal growth factor 8 (MFG‐E8) is a protein that stimulates the engulfment of apoptotic cells by phagocytes. Here, we show that mouse immature dendritic cells (DC) generated in vitro by culturing bone marrow progenitors in the presence of granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), and Langerhans cells present in the skins, expressed MFG‐E8. Bone marrow‐derived macrophages generated by M‐CSF did not express MFG‐E8. MFG‐E8 expressed in immature DC was found to be secreted as exosomes. The expression of MFG‐E8 was significantly suppressed when the immature DC were induced to mature by treating them with lipopolysaccharides. This expression of MFG‐E8 was well correlated with the ability of the cells to engulf apoptotic cells. That is,immature DC phagocytosed apoptotic cells more efficiently than did mature DC or bone marrow‐derived macrophages. The ability of immature DC to engulf apoptotic cells was severely reduced when the immature DC were prepared from MFG‐E8‐deficient mice. These results indicated that MFG‐E8 plays an essential role in the engulfment of apoptotic cells by bone marrow‐derived immature DC.


Molecular and Cellular Biology | 2012

Two-step engulfment of apoptotic cells

Satoshi Toda; Rikinari Hanayama; Shigekazu Nagata

ABSTRACT Apoptotic cells expose phosphatidylserine on their surface as an “eat me” signal, and macrophages respond by engulfing them. Although several molecules that specifically bind phosphatidylserine have been identified, the molecular mechanism that triggers engulfment remains elusive. Here, using a mouse pro-B cell line, Ba/F3, that grows in suspension, we reconstituted the engulfment of apoptotic cells. The parental Ba/F3 cells did not engulf apoptotic cells. Ba/F3 transformants expressing T cell immunoglobulin- and mucin-domain-containing molecule 4 (Tim4), a type I membrane protein that specifically binds phosphatidylserine, efficiently bound apoptotic cells in a phosphatidylserine-dependent manner but did not engulf them. However, Ba/F3 transformants expressing both Tim4 and the integrin αvβ3 complex bound to and engulfed apoptotic cells in the presence of milk fat globule epidermal growth factor factor VIII (MFG-E8), a secreted protein that can bind phosphatidylserine and integrin αvβ3. These results indicate that the engulfment of apoptotic cells proceeds in two steps: Tim4 tethers apoptotic cells, and the integrin αvβ3 complex mediates engulfment in coordination with MFG-E8. A similar two-step engulfment of apoptotic cells was observed with mouse resident peritoneal macrophages. Furthermore, the Tim4/integrin-mediated engulfment by the Ba/F3 cells was enhanced in cells expressing Rac1 and Rab5, suggesting that this system well reproduces the engulfment of apoptotic cells by macrophages.


Journal of Immunology | 2003

Tethering of Apoptotic Cells to Phagocytes through Binding of CD47 to Src Homology 2 Domain-Bearing Protein Tyrosine Phosphatase Substrate-1

Kazutoshi Tada; Masato Tanaka; Rikinari Hanayama; Keiko Miwa; Azusa Shinohara; Akihiro Iwamatsu; Shigekazu Nagata

Apoptotic cells are swiftly phagocytosed by macrophages and immature dendritic cells. In this study, we found that one mouse macrophage cell line (BAM3) engulfed apoptotic thymocytes, but not a lymphoma cell line (WR19L). mAbs that inhibited the phagocytosis of apoptotic thymocytes by BAM3 were identified. Purification of the Ag revealed that it was Src homology 2 domain-bearing protein tyrosine phosphatase substrate-1 (SHPS-1). CD47, the ligand for SHPS-1, was expressed in mouse thymocytes, but not in WR19L. When WR19L was transformed with CD47, the transformants, after induction of apoptosis, could be phagocytosed by BAM3. The WR19L transformants expressing CD47 were more efficiently engulfed in vivo by splenic dendritic cells than the parental WR19L. Masking of the phosphatidylserine exposed on apoptotic thymocytes inhibited the engulfment, whereas the anti-SHPS-1 mAb inhibited not only the engulfment, but also the binding of apoptotic cells to phagocytes. These results indicate that macrophages require CD47 and phosphatidylserine on apoptotic cells for engulfment, and suggest that the interaction between CD47 and SHPS-1 works as a tethering step in the phagocytosis.


Current directions in autoimmunity | 2006

MFG-E8-dependent clearance of apoptotic cells, and autoimmunity caused by its failure.

Rikinari Hanayama; Kay Miyasaka; Michio Nakaya; Shigekazu Nagata

Apoptotic cells are swiftly engulfed by macrophages and immature dendritic cells. Inefficient clearance of apoptotic cells has been implicated as a cause of inflammation and autoimmune diseases. Milk fat globule-EGF factor 8 (MFG-E8) and developmental endothelial locus-1 (Del-1) are glycoproteins secreted from macrophages that pass apoptotic cells to phagocytes. MFG-E8, but not Del-1, is expressed in the tingible-body macrophages at the germinal centers of the second lymphoid tissues. MFG-E8-deficient mice carry many unengulfed apoptotic cells in the germinal centers of the spleen, and develop a lupus-like autoimmune disease. In this review, we discuss the importance of the MFG-E8-mediated clearance of apoptotic cells in the prevention of autoimmune diseases.


Scientific Reports | 2015

Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia

Insaf Bahrini; Ji-hoon Song; Diego Diez; Rikinari Hanayama

Selective elimination of synaptic connections is a common phenomenon which occurs during both developmental and pathological conditions. Glial cells have a central role in the pruning of synapses by specifically engulfing the degenerating neurites of inappropriate connections, but its regulatory mechanisms have been largely unknown. To identify mediators of this process, we established an in vitro cell culture assay for the synapse elimination. Neuronal differentiation and synapse formation of PC12 cells were induced by culturing the cells with nerve growth factor (NGF) in a serum-free medium. To trigger synapse elimination, the NGF-containing medium was replaced with DMEM containing 10% FBS, and the neurites of PC12 cells degenerated within two days. Co-culturing with MG6 cells, a mouse microglial cell line, accelerated the removal of degenerating neurites of PC12 cells by phagocytosis. When MG6 cells were pre-incubated with exosomes secreted from the differentiated PC12 cells after depolarization, the removal was further accelerated by increasing the expression levels of complement component 3 in the MG6 cells. These results define a role for exosomes as a regulator of synapse elimination and clarify a novel mechanism whereby active synapses promote the pruning of inactive ones by stimulating microglial phagocytosis with exosomes.


Scientific Reports | 2016

A novel affinity-based method for the isolation of highly purified extracellular vesicles.

Wataru Nakai; Takeshi Yoshida; Diego Diez; Yuji Miyatake; Takahiro Nishibu; Naoko Imawaka; Ken Naruse; Yoshifusa Sadamura; Rikinari Hanayama

Extracellular vesicles (EVs) such as exosomes and microvesicles serve as messengers of intercellular network, allowing exchange of cellular components between cells. EVs carry lipids, proteins, and RNAs derived from their producing cells, and have potential as biomarkers specific to cell types and even cellular states. However, conventional methods (such as ultracentrifugation or polymeric precipitation) for isolating EVs have disadvantages regarding purity and feasibility. Here, we have developed a novel method for EV purification by using Tim4 protein, which specifically binds the phosphatidylserine displayed on the surface of EVs. Because the binding is Ca2+-dependent, intact EVs can be easily released from Tim4 by adding Ca2+ chelators. Tim4 purification, which we have applied to cell conditioned media and biofluids, is capable of yielding EVs of a higher purity than those obtained using conventional methods. The lower contamination found in Tim4-purified EV preparations allows more EV-specific proteins to be detected by mass spectrometry, enabling better characterization and quantification of different EV populations’ proteomes. Tim4 protein can also be used as a powerful tool for quantification of EVs in both ELISA and flow cytometry formats. Thus, the affinity of Tim4 for EVs will find abundant applications in EV studies.

Collaboration


Dive into the Rikinari Hanayama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Masato Tanaka

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takeshi Yoshida

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akihiro Iwamatsu

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge