Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rikke Birgitte Lyngaa is active.

Publication


Featured researches published by Rikke Birgitte Lyngaa.


Science | 2016

Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade

Nicholas McGranahan; Andrew Furness; Rachel Rosenthal; Sofie Ramskov; Rikke Birgitte Lyngaa; Sunil Kumar Saini; Mariam Jamal-Hanjani; Gareth A. Wilson; Nicolai Juul Birkbak; Crispin Hiley; Thomas B.K. Watkins; Seema Shafi; Nirupa Murugaesu; Richard Mitter; Ayse U. Akarca; Joseph Linares; Teresa Marafioti; Jake Y. Henry; Eliezer M. Van Allen; Diana Miao; Bastian Schilling; Dirk Schadendorf; Levi A. Garraway; Vladimir Makarov; Naiyer A. Rizvi; Alexandra Snyder; Matthew D. Hellmann; Taha Merghoub; Jedd D. Wolchok; Sachet A. Shukla

The cellular ancestry of tumor antigens One contributing factor in antitumor immunity is the repertoire of neoantigens created by genetic mutations within tumor cells. Like the corresponding mutations, these neoantigens show intratumoral heterogeneity. Some are present in all tumor cells (clonal), and others are present in only a fraction of cells (subclonal). In a study of lung cancer and melanoma, McGranahan et al. found that a high burden of clonal tumor neoantigens correlated with improved patient survival, an increased presence of tumor-infiltrating lymphocytes, and a durable response to immunotherapy. Science, this issue p. 1463 Analysis of the cellular ancestry of tumor neoantigens can predict which are most likely to induce an immune response. As tumors grow, they acquire mutations, some of which create neoantigens that influence the response of patients to immune checkpoint inhibitors. We explored the impact of neoantigen intratumor heterogeneity (ITH) on antitumor immunity. Through integrated analysis of ITH and neoantigen burden, we demonstrate a relationship between clonal neoantigen burden and overall survival in primary lung adenocarcinomas. CD8+ tumor-infiltrating lymphocytes reactive to clonal neoantigens were identified in early-stage non–small cell lung cancer and expressed high levels of PD-1. Sensitivity to PD-1 and CTLA-4 blockade in patients with advanced NSCLC and melanoma was enhanced in tumors enriched for clonal neoantigens. T cells recognizing clonal neoantigens were detectable in patients with durable clinical benefit. Cytotoxic chemotherapy–induced subclonal neoantigens, contributing to an increased mutational load, were enriched in certain poor responders. These data suggest that neoantigen heterogeneity may influence immune surveillance and support therapeutic developments targeting clonal neoantigens.


Cancer Research | 2012

Dissection of T cell antigen specificity in human melanoma

Rikke Andersen; Charlotte Albæk Thrue; Niels Junker; Rikke Birgitte Lyngaa; Marco Donia; Eva Ellebaek; Inge Marie Svane; Ton N. M. Schumacher; Per thor Straten; Sine Reker Hadrup

Tumor-infiltrating lymphocytes (TIL) isolated from melanoma patients and expanded in vitro by interleukin (IL)-2 treatment can elicit therapeutic response after adoptive transfer, but the antigen specificities of the T cells transferred have not been determined. By compiling all known melanoma-associated antigens and applying a novel technology for high-throughput analysis of T-cell responses, we dissected the composition of melanoma-restricted T-cell responses in 63 TIL cultures. T-cell reactivity screens against 175 melanoma-associated epitopes detected 90 responses against 18 different epitopes predominantly from differentiation and cancer-testis antigens. Notably, the majority of these responses were of low frequency and tumor-specific T-cell frequencies decreased during rapid expansion. A further notable observation was a large variation in the T-cell specificities detected in cultures established from different fragments of resected melanoma lesions. In summary, our findings provide an initial definition of T-cell populations contributing to tumor recognition in TILs although the specificity of many tumor-reactive TILs remains undefined.


Nature Protocols | 2012

Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers

Rikke Andersen; Pia Kvistborg; Thomas Mørch Frøsig; Natasja Wulff Pedersen; Rikke Birgitte Lyngaa; Arnold H. Bakker; Chengyi Jenny Shu; Per thor Straten; Ton N. M. Schumacher; Sine Reker Hadrup

Fluorescently labeled multimeric complexes of peptide-MHC, the molecular entities recognized by the T cell receptor, have become essential reagents for detection of antigen-specific CD8+ T cells by flow cytometry. Here we present a method for high-throughput parallel detection of antigen-specific T cells by combinatorial encoding of MHC multimers. Peptide-MHC complexes are produced by UV-mediated MHC peptide exchange and multimerized in the form of streptavidin-fluorochrome conjugates. Eight different fluorochromes are used for the generation of MHC multimers and, by a two-dimensional combinatorial matrix, these eight fluorochromes are combined to generate 28 unique two-color codes. By the use of combinatorial encoding, a large number of different T cell populations can be detected in a single sample. The method can be used for T cell epitope mapping, and also for the monitoring of CD8+ immune responses during cancer and infectious disease or after immunotherapy. One panel of 28 combinatorially encoded MHC multimers can be prepared in 4 h. Staining and detection takes a further 3 h.


Nature Biotechnology | 2016

Large-scale detection of antigen-specific T cells using peptide-MHC-I multimers labeled with DNA barcodes

Amalie Kai Bentzen; Andrea Marion Marquard; Rikke Birgitte Lyngaa; Sunil Kumar Saini; Sofie Ramskov; Marco Donia; Lina Such; Andrew Furness; Nicholas McGranahan; Rachel Rosenthal; Per thor Straten; Zoltan Szallasi; Inge Marie Svane; Charles Swanton; Sergio A. Quezada; Soren Nyboe Jakobsen; Aron Charles Eklund; Sine Reker Hadrup

Identification of the peptides recognized by individual T cells is important for understanding and treating immune-related diseases. Current cytometry-based approaches are limited to the simultaneous screening of 10–100 distinct T-cell specificities in one sample. Here we use peptide–major histocompatibility complex (MHC) multimers labeled with individual DNA barcodes to screen >1,000 peptide specificities in a single sample, and detect low-frequency CD8 T cells specific for virus- or cancer-restricted antigens. When analyzing T-cell recognition of shared melanoma antigens before and after adoptive cell therapy in melanoma patients, we observe a greater number of melanoma-specific T-cell populations compared with cytometry-based approaches. Furthermore, we detect neoepitope-specific T cells in tumor-infiltrating lymphocytes and peripheral blood from patients with non-small cell lung cancer. Barcode-labeled pMHC multimers enable the combination of functional T-cell analysis with large-scale epitope recognition profiling for the characterization of T-cell recognition in various diseases, including in small clinical samples.


Clinical Cancer Research | 2014

T-cell Responses to Oncogenic Merkel Cell Polyomavirus Proteins Distinguish Patients with Merkel Cell Carcinoma from Healthy Donors

Rikke Birgitte Lyngaa; Natasja Wulff Pedersen; David Schrama; Charlotte Albaek Thrue; Dafina Ibrani; Özcan Met; Per thor Straten; Paul Nghiem; Juergen C. Becker; Sine Reker Hadrup

Purpose: Merkel cell carcinoma (MCC) is a highly aggressive skin cancer with strong evidence of viral carcinogenesis. The association of MCC with the Merkel cell polyomavirus (MCPyV) may explain the explicit immunogenicity of MCC. Indeed, MCPyV-encoded proteins are likely targets for cytotoxic immune responses to MCC as they are both foreign to the host and necessary to maintain the oncogenic phenotype. However, to date only a single MCPyV-derived CD8 T-cell epitope has been described, thus impeding specific monitoring of T-cell responses to MCC. Method: To overcome this limitation, we scanned the MCPyV oncoprotein large T and small T antigens and the virus capsid protein VP1 for potential T-cell epitopes, and tested for MHC class I affinity. We confirmed the relevance of these epitopes using a high-throughput platform for T-cell enrichment and combinatorial encoding of MHC class I multimers. Results: In peripheral blood from 38 patients with MCC and 30 healthy donors, we identified 53 MCPyV-directed CD8 T-cell responses against 35 different peptide sequences. Strikingly, T-cell responses against oncoproteins were exclusively present in patients with MCC, but not in healthy donors. We further demonstrate both the processing and presentation of the oncoprotein-derived epitopes, as well as the lytic activity of oncoprotein-specific T cells toward MHC-matched MCC cells. Demonstrating the presence of oncoprotein-specific T cells among tumor-infiltrating lymphocytes further substantiated the relevance of the identified epitopes. Conclusion: These T-cell epitopes represent ideal targets for antigen-specific immune therapy of MCC, and enable tracking and characterization of MCPyV-specific immune responses. Clin Cancer Res; 20(7); 1768–78. ©2014 AACR.


Blood Cancer Journal | 2014

5-Azacytidine treatment sensitizes tumor cells to T-cell mediated cytotoxicity and modulates NK cells in patients with myeloid malignancies.

A O Gang; Thomas Mørch Frøsig; Marie Klinge Brimnes; Rikke Birgitte Lyngaa; M B Treppendahl; Kirsten Grønbæk; I H Dufva; P thor Straten; Sine Reker Hadrup

Treatment with the demethylating agent 5-Azacytidine leads to prolonged survival for patients with myelodysplastic syndrome, and the demethylation induces upregulation of cancer-testis antigens. Cancer-testis antigens are well-known targets for immune recognition in cancer, and the immune system may have a role in this treatment regimen. We show here that 5-Azacytidine treatment leads to increased T-cell recognition of tumor cells. T-cell responses against a large panel of cancer-testis antigens were detected before treatment, and these responses were further induced upon initiation of treatment. These characteristics point to an ideal combination of 5-Azacytidine and immune therapy to preferentially boost T-cell responses against cancer-testis antigens. To initiate such combination therapy, essential knowledge is required about the general immune modulatory effect of 5-Azacytidine. We therefore examined potential treatment effects on both immune stimulatory (CD8 and CD4 T cells and Natural Killer (NK) cells) and immune inhibitory cell subsets (myeloid-derived suppressor cells and regulatory T cells). We observed a minor decrease and modulation of NK cells, but for all other populations no effects could be detected. Together, these data support a strategy for combining 5-Azacytidine treatment with immune therapy for potential clinical benefit.


OncoImmunology | 2013

High frequency of T cells specific for cryptic epitopes in melanoma patients

Rikke Andersen; Sofie Ramskov Andersen; Mads Duus Hjortsø; Rikke Birgitte Lyngaa; Manja Idorn; Tania Maria Kollgard; Özcan Met; Per thor Straten; Sine Reker Hadrup

A number of cytotoxic T-cell epitopes are cryptic epitopes generated from non-conventional sources. These include epitopes that are encoded by alternative open reading frames or in generally non-coding genomic regions, such as introns. We have previously observed a frequent recognition of cryptic epitopes by tumor infiltrating lymphocytes isolated from melanoma patients. Here, we show that such cryptic epitopes are more frequently recognized than antigens of the same class encoded by canonical reading frames. Furthermore, we report the presence of T cells specific for three cryptic epitopes encoded in intronic sequences, as a result of incomplete splicing, in the circulation of melanoma patients. One of these epitopes derives from antigen isolated from immunoselected melanoma 2 (AIM2), while the two others are encoded in an alternative open reading frame of an incompletely spliced form of N-acetylglucosaminyl-transferase V (GNT-V) known as NA17-A. We have detected frequent T-cell responses against AIM2 and NA17-A epitopes in the blood of melanoma patients, both prior and after one round of in vitro peptide stimulation, but not in the circulation of healthy individuals and patients with breast or renal carcinoma. In summary, our findings indicate that the T-cell reactivity against AIM2 and NA17-A in the blood of melanoma patients is extensive, suggesting that—similar to melan A (also known as MART1)—these antigens might be used for immunomonitoring or as model antigens in several clinical and preclinical settings.


Oncotarget | 2017

Influence of ipilimumab on expanded tumour derived T cells from patients with metastatic melanoma

Jon Bjoern; Rikke Birgitte Lyngaa; Rikke Andersen; Lisbet Hölmich Rosenkrantz; Sine Reker Hadrup; Marco Donia; Inge Marie Svane

Introduction Tumour infiltrating lymphocyte (TIL) based adoptive cell therapy (ACT) is a promising treatment for patients with advanced melanoma. Retrospective studies suggested an association between previous treatment with anti-CTLA-4 antibodies and long term survival after subsequent ACT. Thus, we hypothesized that treatment with anti-CTLA-4 antibodies can induce favourable changes to be detected in TILs. Results Expanded T cells from Ipilimumab treated patients had a higher proportion of cells expressing CD27, intracellular CTLA-4, TIM-3 and LAG-3. In addition, broader and more frequent T cell responses against common tumour antigens were detected in patients treated with Ipilimumab as compared to anti-CTLA-4 naïve patients. Materials and methods Expanded TILs were obtained from patients with advanced melanoma who had received Ipilimumab in the previous six months, or had not received any type of anti-CTLA-4 antibody. T cell specificity and expression of phenotypic and exhaustion markers were scrutinized as well as functional properties. Conclusions Ipilimumab may induce tumor-infiltration of T cells of a more naïve phenotype expressing markers related to activation or exhaustion. Additionally, Ipilimumab may increase the frequency of T cells recognizing common tumour associated antigens.


Cancer Immunology, Immunotherapy | 2015

Broadening the repertoire of melanoma-associated T-cell epitopes

Thomas Mørch Frøsig; Rikke Birgitte Lyngaa; Özcan Met; Stine Kiaer Larsen; Marco Donia; Inge Marie Svane; Per thor Straten; Sine Reker Hadrup

Immune therapy has provided a significant breakthrough in the treatment of metastatic melanoma. Despite the remarkable clinical efficacy and established involvement of effector CD8 T cells, the knowledge of the exact peptide-MHC complexes recognized by T cells on the tumor cell surface is limited. Many melanoma-associated T-cell epitopes have been described, but this knowledge remains largely restricted to HLA-A2, and we lack understanding of the T-cell recognition in the context of other HLA molecules. We selected six melanoma-associated antigens (MAGE-A3, NY-ESO-1, gp100, Mart1, tyrosinase and TRP-2) that are frequently recognized in patients with the aim of identifying novel T-cell epitopes restricted to HLA-A1, -A3, -A11 and -B7. Using in silico prediction and in vitro confirmation, we identified 127 MHC ligands and analyzed the T-cell responses against these ligands via the MHC multimer-based enrichment of peripheral blood from 39 melanoma patients and 10 healthy donors. To dissect the T-cell reactivity against this large peptide library, we used combinatorial-encoded MHC multimers and observed the T-cell responses against 17 different peptide-MHC complexes in the patient group and four in the healthy donor group. We confirmed the processing and presentation of HLA-A3-restricted T-cell epitopes from tyrosinase (TQYESGSMDK) and gp100 (LIYRRRLMK) and an HLA-A11-restricted T-cell epitope from gp100 (AVGATKVPR) via the cytolytic T-cell recognition of melanoma cell lines and/or K562 cells expressing the appropriate antigen and HLA molecule. We further found T-cell reactivity against two of the identified sequences among tumor-infiltrating lymphocytes from melanoma patients, suggesting a potential clinical relevance of these sequences.


Clinical Cancer Research | 2017

PD-1+ polyfunctional T cells dominate the periphery after tumor-infiltrating lymphocyte therapy for cancer

Marco Donia; Julie Westerlin Kjeldsen; Rikke Andersen; Marie Christine Wulff Westergaard; Valentina Bianchi; Mateusz Legut; Meriem Attaf; Barbara Szomolay; Sascha Ott; Garry Dolton; Rikke Birgitte Lyngaa; Sine Reker Hadrup; Andrew K. Sewell; Inge Marie Svane

Purpose: Infusion of highly heterogeneous populations of autologous tumor-infiltrating lymphocytes (TIL) can result in tumor regression of exceptional duration. Initial tumor regression has been associated with persistence of tumor-specific TILs 1 month after infusion, but mechanisms leading to long-lived memory responses are currently unknown. Here, we studied the dynamics of bulk tumor-reactive CD8+ T-cell populations in patients with metastatic melanoma following treatment with TILs. Experimental Design: We analyzed the function and phenotype of tumor-reactive CD8+ T cells contained in serial blood samples of 16 patients treated with TILs. Results: Polyfunctional tumor-reactive CD8+ T cells accumulated over time in the peripheral lymphocyte pool. Combinatorial analysis of multiple surface markers (CD57, CD27, CD45RO, PD-1, and LAG-3) showed a unique differentiation pattern of polyfunctional tumor-reactive CD8+ T cells, with highly specific PD-1 upregulation early after infusion. The differentiation and functional status appeared largely stable for up to 1 year after infusion. Despite some degree of clonal diversification occurring in vivo within the bulk tumor-reactive CD8+ T cells, further analyses showed that CD8+ T cells specific for defined tumor antigens had similar differentiation status. Conclusions: We demonstrated that tumor-reactive CD8+ T-cell subsets that persist after TIL therapy are mostly polyfunctional, display a stable partially differentiated phenotype, and express high levels of PD-1. These partially differentiated PD-1+ polyfunctional TILs have a high capacity for persistence and may be susceptible to PD-L1/PD-L2–mediated inhibition. Clin Cancer Res; 23(19); 5779–88. ©2017 AACR.

Collaboration


Dive into the Rikke Birgitte Lyngaa's collaboration.

Top Co-Authors

Avatar

Sine Reker Hadrup

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inge Marie Svane

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Marco Donia

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Rikke Andersen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natasja Wulff Pedersen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Özcan Met

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sunil Kumar Saini

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar

Ton N. M. Schumacher

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge