Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Riku Linna is active.

Publication


Featured researches published by Riku Linna.


EPL | 2009

Dynamics of forced biopolymer translocation

Ville V. Lehtola; Riku Linna; Kimmo Kaski

We present results from our simulations of biopolymer translocation in a solvent which explain the main experimental findings. The forced translocation can be described by simple force balance arguments for the relevant range of pore potentials in experiments and biological systems. Scaling of translocation time with polymer length varies with pore force and friction. Hydrodynamics affects this scaling and significantly reduces translocation times.


Physical Review E | 2008

Critical evaluation of the computational methods used in the forced polymer translocation.

Ville V. Lehtola; Riku Linna; Kimmo Kaski

In forced polymer translocation, the average translocation time tau scales with respect to pore force f and polymer length N as tau approximately f;{-1}N;{beta} . We demonstrate that an artifact in the Metropolis Monte Carlo method resulting in breakage of the force scaling with large f may be responsible for some of the controversies between different computationally obtained results and also between computational and experimental results. Using Langevin dynamics simulations we show that the scaling exponent beta<or=1+nu is not universal, but depends on f . Moreover, we show that forced translocation can be described by a relatively simple force balance argument and beta to arise solely from the initial polymer configuration.


Physical Review E | 2016

Chaperone-assisted translocation of flexible polymers in three dimensions.

Pauli Suhonen; Riku Linna

Polymer translocation through a nanometer-scale pore assisted by chaperones binding to the polymer is a process encountered in vivo for proteins. Studying the relevant models by computer simulations is computationally demanding. Accordingly, previous studies are either for stiff polymers in three dimensions or flexible polymers in two dimensions. Here, we study chaperone-assisted translocation of flexible polymers in three dimensions using Langevin dynamics. We show that differences in binding mechanisms, more specifically, whether a chaperone can bind to a single site or multiple sites on the polymer, lead to substantial differences in translocation dynamics in three dimensions. We show that the single-binding mode leads to dynamics that is very much like that in the constant-force driven translocation and accordingly mainly determined by tension propagation on the cis side. We obtain β≈1.26 for the exponent for the scaling of the translocation time with polymer length. This fairly low value can be explained by the additional friction due to binding particles. The multiple-site binding leads to translocation the dynamics of which is mainly determined by the trans side. For this process we obtain β≈1.36. This value can be explained by our derivation of β=4/3 for constant-bias translocation, where translocated polymer segments form a globule on the trans side. Our results pave the way for understanding and utilizing chaperone-assisted translocation where variations in microscopic details lead to rich variations in the emerging dynamics.


Physical Review E | 2010

Pore-polymer interaction reveals nonuniversality in forced polymer translocation.

Ville V. Lehtola; Kimmo Kaski; Riku Linna

We present a numerical study of forced polymer translocation by using two separate pore models. Both of them have been extensively used in previous forced translocation studies. We show that variations in the pore model affect the forced translocation characteristics significantly in the biologically relevant range of the pore force, i.e., the driving force. Details of the model are shown to change even the obtained scaling relations, which is a strong indication of strongly out-of-equilibrium dynamics in the computational studies which have not yet succeeded in addressing the characteristics of the forced translocation for biopolymers at realistic length scale.


Physical Review E | 2014

Criteria for minimal model of driven polymer translocation

Pauli Suhonen; Kimmo Kaski; Riku Linna

While the characteristics of the driven translocation for asymptotically long polymers are well understood, this is not the case for finite-sized polymers, which are relevant for real-world experiments and simulation studies. Most notably, the behavior of the exponent α, which describes the scaling of the translocation time with polymer length, when the driving force fp in the pore is changed, is under debate. By Langevin dynamics simulations of regular and modified translocation models using the freely jointed-chain polymer model we find that a previously reported incomplete model, where the trans side and fluctuations were excluded, gives rise to characteristics that are in stark contradiction with those of the complete model, for which α increases with fp. Our results suggest that contribution due to fluctuations is important. We construct a minimal model where dynamics is completely excluded to show that close alignment with a full translocation model can be achieved. Our findings set very stringent requirements for a minimal model that is supposed to describe the driven polymer translocation correctly.


Physical Review E | 2012

Thermal conduction and interface effects in nanoscale Fermi-Pasta-Ulam conductors.

Kimmo Sääskilahti; Jani Oksanen; Riku Linna; Jukka Tulkki

We perform classical nonequilibrium molecular dynamics simulations to calculate heat flow through a microscopic junction connecting two larger reservoirs. In contrast to earlier papers, we also include the reservoirs in the simulated region to study the effect of the bulk-nanostructure interfaces and the bulk conductance. The scalar Fermi-Pasta-Ulam (FPU) model is used to describe the effects of anharmonic interactions in a simple manner. The temperature profile close to the junction in the low-temperature limit is shown to exhibit strong directional features that fade out when temperature increases. Simulating both the FPU chain and the two bulk regions is also shown to eliminate the nonmonotonous temperature variations found for simpler geometries and models. We show that, with sufficiently large reservoirs, the temperature profile in the chain does not depend on the details of thermalization used at the boundaries.


Physical Review E | 2017

Quantification of tension to explain bias dependence of driven polymer translocation dynamics

Pauli Suhonen; Joonas Piili; Riku Linna

Motivated by identifying the origin of the bias dependence of tension propagation, we investigate methods for measuring tension propagation quantitatively in computer simulations of driven polymer translocation. Here, the motion of flexible polymer chains through a narrow pore is simulated using Langevin dynamics. We measure tension forces, bead velocities, bead distances, and bond angles along the polymer at all stages of translocation with unprecedented precision. Measurements are done at a standard temperature used in simulations and at zero temperature to pin down the effect of fluctuations. The measured quantities were found to give qualitatively similar characteristics, but the bias dependence could be determined only using tension force. We find that in the scaling relation τ∼N^{β}f_{d}^{α} for translocation time τ, the polymer length N, and the bias force f_{d}, the increase of the exponent β with bias is caused by center-of-mass diffusion of the polymer toward the pore on the cis side. We find that this diffusion also causes the exponent α to deviate from the ideal value -1. The bias dependence of β was found to result from combination of diffusion and pore friction and so be relevant for polymers that are too short to be considered asymptotically long. The effect is relevant in experiments all of which are made using polymers whose lengths are far below the asymptotic limit. Thereby, our results also corroborate the theoretical prediction by Sakaues theory [Polymers 8, 424 (2016)2073-436010.3390/polym8120424] that there should not be bias dependence of β for asymptotically long polymers. By excluding fluctuations we also show that monomer crowding at the pore exit cannot have a measurable effect on translocation dynamics under realistic conditions.


Physical Review E | 2016

Driven polymer translocation in good and bad solvent: Effects of hydrodynamics and tension propagation

Jaakko Moisio; Joonas Piili; Riku Linna

We investigate the driven polymer translocation through a nanometer-scale pore in the presence and absence of hydrodynamics both in good and bad solvent. We present our results on tension propagating along the polymer segment on the cis side that is measured for the first time using our method that works also in the presence of hydrodynamics. For simulations we use stochastic rotation dynamics, also called multiparticle collision dynamics. We find that in the good solvent the tension propagates very similarly whether hydrodynamics is included or not. Only the tensed segment is by a constant factor shorter in the presence of hydrodynamics. The shorter tensed segment and the hydrodynamic interactions contribute to a smaller friction for the translocating polymer when hydrodynamics is included, which shows as smaller waiting times and a smaller exponent in the scaling of the translocation time with the polymer length. In the bad solvent hydrodynamics has a minimal effect on polymer translocation, in contrast to the good solvent, where it speeds up translocation. We find that under bad-solvent conditions tension does not spread appreciably along the polymer. Consequently, translocation time does not scale with the polymer length. By measuring the effective friction in a setup where a polymer in free solvent is pulled by a constant force at the end, we find that hydrodynamics does speed up collective polymer motion in the bad solvent even more effectively than in the good solvent. However, hydrodynamics has a negligible effect on the motion of individual monomers within the highly correlated globular conformation on the cis side and hence on the entire driven translocation under bad-solvent conditions.


Physical Review E | 2014

Dynamics of polymer ejection from capsid.

Riku Linna; Jaakko Moisio; Pauli Suhonen; Kimmo Kaski

Polymer ejection from a capsid through a nanoscale pore is an important biological process with relevance to modern biotechnology. Here, we study generic capsid ejection using Langevin dynamics. We show that even when the ejection takes place within the drift-dominated region there is a very high probability for the ejection process not to be completed. Introducing a small aligning force at the pore entrance enhances ejection dramatically. Such a pore asymmetry is a candidate for a mechanism by which viral ejection is completed. By detailed high-resolution simulations we show that such capsid ejection is an out-of-equilibrium process that shares many common features with the much studied driven polymer translocation through a pore in a wall or a membrane. We find that the ejection times scale with polymer length, τ ∼ N(α). We show that for the pore without the asymmetry the previous predictions corroborated by Monte Carlo simulations do not hold. For the pore with the asymmetry the scaling exponent varies with the initial monomer density (monomers per capsid volume) ρ inside the capsid. For very low densities ρ ≤ 0.002 the polymer is only weakly confined by the capsid, and we measure α = 1.33, which is close to α=1.4 obtained for polymer translocation. At intermediate densities the scaling exponents α = 1.25 and 1.21 for ρ = 0.01 and 0.02, respectively. These scalings are in accord with a crude derivation for the lower limit α = 1.2. For the asymmetrical pore precise scaling breaks down, when the density exceeds the value for complete confinement by the capsid, ρ ⪆ 0.25. The high-resolution data show that the capsid ejection for both pores, analogously to polymer translocation, can be characterized as a multiplicative stochastic process that is dominated by small-scale transitions.


Physical Review E | 2013

Sedimentation of knotted polymers

Joonas Piili; Davide Marenduzzo; Kimmo Kaski; Riku Linna

We investigate the sedimentation of knotted polymers by means of stochastic rotation dynamics, a molecular dynamics algorithm that takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number n(c) of the corresponding ideal knot. This provides direct computational confirmation of this relation, postulated on the basis of sedimentation experiments by Rybenkov et al. [J. Mol. Biol. 267, 299 (1997)]. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration R(g)(-1), more specifically with the inverse of the R(g) component that is perpendicular to the direction along which the polymer sediments. When the polymer sediments in a slab, the walls affect the results appreciably. However, R(g)(-1) remains to a good precision linearly dependent on n(c). Therefore, R(g)(-1) is a good measure of a knots complexity.

Collaboration


Dive into the Riku Linna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.A. Åström

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jussi Timonen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge