Rimma Lapovok
Deakin University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rimma Lapovok.
Biomaterials | 2010
Vi Khanh Truong; Rimma Lapovok; Y. Estrin; Stuart Rundell; James Wang; Christopher J. Fluke; Russell J. Crawford; Elena P. Ivanova
We discuss the effect of extreme grain refinement in the bulk of commercial purity titanium (CP, Grade-2) on bacterial attachment to the mechano-chemically polished surfaces of the material. The ultrafine crystallinity of the bulk was achieved by severe plastic deformation by means of equal channel angular pressing (ECAP). The chemical composition, wettability, surface topography and roughness of titanium surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements, as well as atomic force microscopy (AFM) with 3D interactive visualization of the titanium surface morphology. It was found that physico-chemical surface characteristics of the as-received and the ECAP-modified CP titanium did not differ in any significant way, while the surface roughness at the nano-scale did. Optical profilometry performed on large scanning areas of approximately 225 mum x 300 mum showed that there was no significant difference between the roughness parameters R(a) and R(q) for surfaces in the two conditions, the overall level of roughness being lower for the ECAP-processed one. By contrast, topographic profile analysis at the nano-scale by AFM did reveal a difference in these parameters. This difference was sensitive to the size of the scanned surface area. A further two surface roughness parameters, skewness (R(skw)) and kurtosis (R(kur)), were also used to describe the morphology of titanium surfaces. It was found that the bacterial strains used in this study as adsorbates, viz. Staphylococcus aureus CIP 65.8 and Pseudomonas aeruginosa ATCC 9025, showed preference for surfaces of ECAP-processed titanium. S. aureus cells were found to have a greater propensity for attachment to surfaces of ECAP-modified titanium, while the attachment of P. aeruginosa, while also showing some preference for the ECAP-processed material, was less sensitive to the ECAP processing.
Materials Science and Engineering A-structural Materials Properties Microstructure and Processing | 2003
V.V. Stolyarov; Rimma Lapovok; I. G. Brodova; P.F. Thomson
Abstract A process for increasing both strength and ductility in a brittle Al–5 wt.% Fe alloy by Equal Channel Angular Pressing (ECAP) was investigated. The increase in solid solubility of iron in the Al matrix produced by intense deformation under ECAP permitted age hardening in this alloy although it is not hardenable by conventional processing. An ultrafine-grained microstructure of 325–450 nm was obtained in a brittle, cast Al–5 wt.% Fe alloy by ECAP with various numbers of passes and backpressure levels from 40 to 275 MPa. A supersaturated solid solution with a maximum solubility of 0.6 wt.% of iron in an aluminium matrix was obtained during ECAP, which allowed ageing of the conventionally non-hardenable alloy. Strength, ductility and microhardness of the cast alloy processed by the ECAP technique were significantly enhanced (e.g. strength and ductility from 102 MPa and 3.4% to 261 MPa and 5.8%, respectively). The subsequent artificial ageing resulted in a further increase in strength to 272 MPa. It was shown by scanning electron microscopy (SEM) that the type of fracture of tensile specimens taken from material subjected to ECAP was predominantly ductile. An increase in backpressure retards cracking of intermetallic particles and enhances the workability and ductility of such alloys processed by ECAP.
Acta Biomaterialia | 2011
Y. Estrin; Elena P. Ivanova; Anna Michalska; Vi Khanh Truong; Rimma Lapovok; Richard L. Boyd
Commercial purity titanium with an average grain size in the low sub-micron range was produced by equal channel angular pressing (ECAP). Attachment of human bone marrow-derived mesenchymal stem cells (hMSCs) to the surface of conventional coarse grained and ECAP-modified titanium was studied. It was demonstrated that the attachment and spreading of hMSCs in the initial stages (up to 24h) of culture was enhanced by grain refinement. Surface characterization by a range of techniques showed that the main factor responsible for the observed acceleration of hMSC attachment and spreading on titanium due to grain refinement in the bulk is the attendant changes in surface topography on the nanoscale. These results indicate that, in addition to its superior mechanical properties, ECAP-modified titanium possesses improved biocompatibility, which makes it to a potent candidate for applications in medical implants.
Journal of Biomedical Materials Research Part A | 2009
Y. Estrin; Cornelia Kasper; Solvig Diederichs; Rimma Lapovok
This work is part of a general effort to demonstrate the effect of the bulk microstructure of titanium as a model bone implant material on viability of osteoblasts (bone-forming cells). The objective of this work was to study the proliferation of preosteoblastic MC3T3-E1 cells extracted from mice embryos on commercial purity titanium substrates. Two distinct states of titanium were considered: as-received material with an average grain size of 4.5 microm and that processed by equal channel angular pressing (ECAP), with an average grain size of 200 nm. We report the first results of an in vitro study into the effect of this extreme grain refinement on viability and proliferation of MC3T3-E1 cells. By means of MTT assays it was demonstrated that ECAP processing of titanium enhances MC3T3-E1 culture proliferation in a spectacular way. This finding suggests that bone implants made from ECAP processed titanium may promote bone tissue growth.
Journal of Materials Research | 2005
Rimma Lapovok; R Cottam; Peter Thomson; Y. Estrin
Exceptionally high tensile ductility of commercial Mg alloy ZK60 is reported. It was achieved by equal channel angular pressing without any extra processing steps. The tensile ductility at 220 °C was 2040% and 1400% for the strain rates of 3 × 10 −4 s −1 and 3 × 10 −3 s −1 , respectively. The strain rate sensitivity of the flow stress exhibited a value slightly above 0.5, which is characteristic of superplastic deformation. The grain structure associated with this behavior was shown to be bi-modal with further separation in two fractions with different grain sizes within the small grain size population.
Materials Science Forum | 2006
Rimma Lapovok
Equal Channel Angular Extrusion (ECAE) has become a very popular tool for studying the evolution of microstructure and properties under severe plastic deformation. It is believed that the stress-strain characteristics are uniform in a cross-section of the billet and this uniformity of the stress-strain distribution ensures the uniformity of microstructure and mechanical properties in ECAE processed billet. However, some experimental data such as the fracture of the extruded billet, which is initiated at the inner surface of the sample, has caused doubts about uniformity of stress-strain distribution. This non-uniformity has been proved recently by Finite Element Simulation. In this paper the studies of the positive role of the applied back-pressure during ECAE are reviewed and the influence of a back-pressure on the uniformity of the stress-strain distribution, strain localisation, die corner filing, and the prevention of fracture is shown. The effect of back-pressure on grain refinement and improvement in mechanical properties is emphasized. The paper summarises our results from over seven years of work using a unique machine for ECAE with computer-controlled back-pressure and velocity of the backward punch.
Biofouling | 2013
Hayden K. Webb; Veselin Boshkovikj; Christopher J. Fluke; Vi Khanh Truong; Jafar Hasan; Vladimir A. Baulin; Rimma Lapovok; Yuri Estrin; Russell J. Crawford; Elena P. Ivanova
Despite the volume of work that has been conducted on the topic, the role of surface topography in mediating bacterial cell adhesion is not well understood. The primary reason for this lack of understanding is the relatively limited extent of topographical characterisation employed in many studies. In the present study, the topographies of three sub-nanometrically smooth titanium (Ti) surfaces were comprehensively characterised, using nine individual parameters that together describe the height, shape and distribution of their surface features. This topographical analysis was then correlated with the adhesion behaviour of the pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, in an effort to understand the role played by each aspect of surface architecture in influencing bacterial attachment. While P. aeruginosa was largely unable to adhere to any of the three sub-nanometrically smooth Ti surfaces, the extent of S. aureus cell attachment was found to be greater on surfaces with higher average, RMS and maximum roughness and higher surface areas. The cells also attached in greater numbers to surfaces that had shorter autocorrelation lengths and skewness values that approached zero, indicating a preference for less ordered surfaces with peak heights and valley depths evenly distributed around the mean plane. Across the sub-nanometrically smooth range of surfaces tested, it was shown that S. aureus more easily attached to surfaces with larger features that were evenly distributed between peaks and valleys, with higher levels of randomness. This study demonstrated that the traditionally employed amplitudinal roughness parameters are not the only determinants of bacterial adhesion, and that spatial parameters can also be used to predict the extent of attachment.
Journal of Materials Research | 2009
Rimma Lapovok; László S. Tóth; M. Winkler; Sl Semiatin
Abstract : Microstructure evolution, mechanical properties, formability, and texture development were determined for AA6111 samples processed by asymmetric rolling (ASR) with different roll friction, velocity, or diameters, conventional rolling (CR), and equal-channel-angular pressing (ECAP). Highly elongated or sheared grain structures were developed during ASR/CR and ECAP, respectively. ASR led to improved r-values and formability compared to CR primarily as a result of the development of moderate shear-texture components analogous to those developed during ECAP of billet material. ASR based on different roll diameters gave the best combination of strength, ductility, and formability.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
Alexander E. Medvedev; Hoi Pang Ng; Rimma Lapovok; Yuri Estrin; Terry C. Lowe; Venkata N. Anumalasetty
Surface modification techniques are widely used to enhance the biological response to the implant materials. These techniques generally create a roughened surface, effectively increasing the surface area thus promoting cell adhesion. However, a negative side effect is a higher susceptibility of a roughened surface to failure due to the presence of multiple stress concentrators. The purpose of the study reported here was to examine the effects of surface modification by sand blasting and acid-etching (SLA) on the microstructure and fatigue performance of coarse-grained and ultrafine-grained (UFG) commercially pure titanium. Finer grain sizes, produced by equal channel angular pressing, resulted in lower values of surface roughness in SLA-processed material. This effect was associated with greater resistance of the UFG structure to plastic deformation. The fatigue properties of UFG Ti were found to be superior to those of coarse-grained Ti and conventional Ti-6Al-4V, both before and after SLA-treatment.
Journal of Materials Science | 2012
Rimma Lapovok; Andrey Molotnikov; Yuri Levin; Asham Bandaranayake; Yuri Estrin
Machining of titanium is quite difficult and expensive. Heat generated in the process of cutting does not dissipate quickly, which affects tool life. In the last decade ultra fine grained (UFG) titanium has emerged as an option for substitution for more expensive titanium alloys. Extreme grain refinement can be readily performed by severe plastic deformation techniques. Grain refinement of a material achieved in this way was shown to change its mechanical and physical properties. In the present study, the microstructure evolution and the shear band formation in chips of coarse grained and UFG titanium machined to three different depths and three different feeding rates was investigated. A change in thermal characteristics of commercial purity Ti with grain refinement was studied by comparing heating/cooling measurements with an analytical solution of the heat transfer boundary problem. It was demonstrated that an improvement in the machinability can be expected for UFG titanium.