Rina Aharoni
Weizmann Institute of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rina Aharoni.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Rina Aharoni; Basak Kayhan; Raya Eilam; Michael Sela; Ruth Arnon
The ability of a remedy to modulate the pathological process in the target organ is crucial for its therapeutic activity. Glatiramer acetate (GA, Copaxone, Copolymer 1), a drug approved for the treatment of multiple sclerosis, induces regulatory T helper 2/3 cells that penetrate the CNS. Here we investigated whether these GA-specific T cells can function as suppressor cells with therapeutic potential in the target organ by in situ expression of T helper 2/3 cytokines and neurotrophic factors. GA-specific cells and their in situ expression were detected on the level of whole-brain tissue by using a two-stage double-labeling system: (i) labeling of the GA-specific T cells, followed by their adoptive transfer, and (ii) detection of the secreted factors in the brain by immunohistological methods. GA-specific T cells in the CNS demonstrated intense expression of the brain-derived neurotrophic factor and of two antiinflammatory cytokines, IL-10 and transforming growth factor β. No expression of the inflammatory cytokine IFN-γ was observed. This pattern of expression was manifested in brains of normal and experimental autoimmune encephalomyelitis-induced mice to which GA-specific cells were adoptively transferred, but not in control mice. Furthermore, infiltration of GA-induced cells to the brain resulted in bystander expression of IL-10 and transforming growth factor β by resident astrocytes and microglia. The ability of infiltrating GA-specific cells to express antiinflammatory cytokines and neurotrophic factor in the organ in which the pathological processes occur correlates directly with the therapeutic activity of GA in experimental autoimmune encephalomyelitis/multiple sclerosis.
Journal of Neuroimmunology | 1998
Rina Aharoni; Dvora Teitelbaum; Michael Sela; Ruth Arnon
The synthetic amino acid copolymer, copolymer 1 (Cop 1) induces T suppressor (Ts) lines/clones, which are confined to the Th2 pathway, cross react with myelin basic protein (MBP), but not with other myelin antigens on the level of Th2 cytokine secretion. Nevertheless, Cop 1 Ts cells inhibited the IL-2 response of a proteolipid protein (PLP) specific line. Furthermore, Cop 1 Ts cells ameliorated EAE induced by two unrelated encephalitogenic epitopes of PLP: p139-151 and p178-191, that produced different forms of disease. This bystander suppression demonstrated by the Cop 1 Ts cells may explain the therapeutic effect of Cop 1 in EAE and MS.
The Journal of Neuroscience | 2005
Rina Aharoni; Ruth Arnon; Raya Eilam
Brain insults such as the autoimmune inflammatory process in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) induce a measure of neurogenesis, but its regenerative therapeutic consequence is limited, because it fails to regenerate functional neurons and compensate the damage. Here, we investigated whether peripheral immunomodulatory treatment for MS/EAE, glatiramer acetate (GA), can enhance neurogenesis and generate neuroprotection in the CNS of EAE-inflicted mice. EAE was induced by myelin oligodendrocyte glycoprotein peptide, either in yellow fluorescent protein (YFP) 2.2 transgenic mice, which selectively express YFP on their neuronal population, or in C57BL/6 mice. The in situ effect of GA was studied in various brain regions; neuroprotection and neurogeneration were evaluated and quantified by measuring the expression of different neuronal antigens and in vivo proliferation markers. The results demonstrated that in EAE-inflicted mice, neuroproliferation was initially elevated after disease appearance but subsequently declined below that of naive mice. In contrast, GA treatment in various stages of the disease led to sustained reduction in the neuronal/axonal damage typical to the neurodegenerative disease course. Moreover, three processes characteristic of neurogenesis, namely cell proliferation, migration, and differentiation, were augmented and extended by GA treatment in EAE mice compared with EAE-untreated mice and naive controls. The newborn neuroprogenitors manifested massive migration through exciting and dormant migration pathways, into injury sites in brain regions, which do not normally undergo neurogenesis, and differentiated to mature neuronal phenotype. This suggests a direct linkage between immunomodulation, neurogenesis, and an in situ therapeutic consequence in the CNS.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Rina Aharoni; Avia Herschkovitz; Raya Eilam; Michal Blumberg-Hazan; Michael Sela; Wolfgang Brück; Ruth Arnon
The interplay between demyelination and remyelination is critical in the progress of multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). In the present study, we explored the capacity of glatiramer acetate (GA, Copaxone) to affect the demyelination process and/or lead to remyelination in mice inflicted by chronic EAE, using both scanning electron microscopy and immunohistological methods. Spinal cords of untreated EAE mice revealed substantial demyelination accompanied by tissue destruction and axonal loss. In contrast, in spinal cords of GA-treated mice, in which treatment started concomitantly with disease induction (prevention), no pathology was observed. Moreover, when treatment was initiated after the appearance of clinical symptoms (suppression) or even in the chronic disease phase (delayed suppression) when substantial demyelination was already manifested, it resulted in a significant decrease in the pathological damage. Detection of oligodendrocyte progenitor cells (OPCs) expressing the NG2 or O4 markers via colocalization with the proliferation marker BrdU indicated their elevated levels in spinal cords of GA-treated mice. The mode of action of GA in this system is attributed to increased proliferation, differentiation, and survival of OPCs along the oligodendroglial maturation cascade and their recruitment into injury sites, thus enhancing repair processes in situ.
Multiple Sclerosis Journal | 2003
Dvora Teitelbaum; T Brenner; Oded Abramsky; Rina Aharoni; Michael Sela; Ruth Arnon
G latiramer acetate (GA) previously known as C opolymer 1 (Cop 1), a synthetic amino acid copolymer, suppresses experimental autoimmune encephalomyelitis (EAE) and shows a beneficial effect in relapsing-remitting type of multiple sclerosis (MS). G A acts as a specific immunomodulator by binding to MHC C lass II molecules, inducing specific T suppressor (Ts) cells and interfering with T cell responses to myelin antigens. MS patients treated with GA developed GA reactive antibodies, which peaked at three months and decreased at six months. In order to find out whether anti-G A antibodies may neutralize the therapeutic effect of GA, we tested both polyclonal (mouse and human) and monoclonal G A specific antibodies for their ability to interfere with the biological activity of GA in several assay systems. None of the antibodies interfered with GA activities either in vitro (binding to MHC molecules and T cell stimulation) or in vivo (blocking of EAE). Furthermore, 53 samples of sera obtained from 34 MS patients that participated in the open label trial in Israel, and all developed G A specific antibodies, were tested for their ability to inhibit the proliferation response of GA specific Ts cell clone and to interfere with G A competitive inhibition of the response to peptide 84-102 of myelin basic protein (MBP). None of the sera inhibited and some even enhanced the in vitro activities of G A. Furthermore, representative MS sera with high titer of G A reactive antibodies did not neutralize the biological activities of G A and did not inhibit Th2 cytokine secretion by human G A specific clone. These results are consistent with the findings that the therapeutic effect of GA is not affected by GA reactive antibodies and is sustained upon long term treatment.
Autoimmunity Reviews | 2013
Rina Aharoni
In multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE), the immune system reacts again self myelin constitutes in the central nervous system (CNS), initiating a detrimental inflammatory cascade that leads to demyelination as well as axonal and neuronal pathology. The amino acid copolymer glatiramer acetate (GA, Copaxone) is an approved first-line treatment for MS that has a unique mode of action. Accumulated evidence from EAE-induced animals and from MS patients indicates that GA affects various levels of the innate and the adaptive immune response, generating deviation from the pro-inflammatory to the anti-inflammatory pathway. This review aims to provide a comprehensive perspective on the diverse mechanism of action of GA in EAE/MS, in particular on the in situ immunomodulatory effect of GA and its ability to generate neuroprotective repair consequences in the CNS. In view of its immunomodulatory activity, the beneficial effect of GA in various models of other autoimmune related pathologies, such as immune rejection and inflammatory bowel disease (IBD) is noteworthy.
Journal of Neuroimmunology | 2010
Rina Aharoni; Raya Eilam; Ariel Stock; Anya Vainshtein; Elias Shezen; Hilah Gal; Nir Friedman; Ruth Arnon
The aim of this study was to identify cell populations relevant to pathogenesis and repair within the injured CNS in mice that recovered from experimental autoimmune encephalomyelitis (EAE). We demonstrate that in two EAE models, with either relapsing-remitting or chronic course, T-cells and resident activated microglia manifested extensive IL-17 expression, with apparent localization within regions of myelin loss. In mice treated with glatiramer acetate (GA, Copaxone), even when treatment started after disease exacerbation, CNS inflammation and Th-17 occurrence were drastically reduced, with parallel elevation in T-regulatory cells, indicating the immunomodulatory therapeutic consequences of GA treatment in situ.
Journal of Autoimmunity | 2011
Rina Aharoni; Anya Vainshtein; Ariel Stock; Raya Eilam; Renana From; Vera Shinder; Ruth Arnon
The respective roles of inflammatory and neurodegenerative processes in the pathology of multiple sclerosis (MS) and in its animal model experimental autoimmune encephalomyelitis (EAE) are controversial. Novel treatment strategies aim to operate within the CNS to induce neuroprotection and repair processes in addition to their anti-inflammatory properties. In this study we analyzed and compared the in situ pathological manifestations of EAE utilizing two different models, namely the relapsing-remitting PLP-induced and the chronic MOG-induced diseases. To characterize pathological changes, both transmission electron microscopy (TEM) and immunohistochemistry were employed. The effect of the approved MS drug glatiramer acetate (GA, Copaxone) on myelin damage/repair and on motor neuron loss/preservation was studied in both EAE models. Ultrastructural spinal cord analysis revealed multiple white matter damage foci, with different patterns in the two EAE models. Thus, the relapsing-remitting model was characterized mainly by widespread myelin damage and by remyelinating fibers, whereas in the chronic model axonal degeneration was more prevalent. Loss of lower motor neurons was manifested only in mice with chronic MOG-induced disease. In the GA-treated mice, smaller lesions, increased axonal density and higher prevalence of normal appearing axons were observed, as well as decreased demyelination and degeneration. Furthermore, quantitative analysis of the relative remyelination versus demyelination, provides for the first time evidence of significant augmentation of remyelination after GA treatment. The loss of motor neurons in GA-treated mice was also reduced in comparison to that of EAE untreated mice. These effects were obtained even when GA treatment was applied in a therapeutic schedule, namely after the appearance of clinical symptoms. Hence, the remyelination and neuronal preservation induced by GA are in support of the neuroprotective consequences of this treatment.
Journal of Neuroimmunology | 2012
Rina Aharoni; Ravit Saada; Raya Eilam; Liat Hayardeny; Michael Sela; Ruth Arnon
Laquinimod is an orally active molecule that showed efficacy in clinical trials in multiple sclerosis. We studied its effects in the CNS, when administered by therapeutic regimen to mice inflicted with experimental autoimmune encephalomyelitis (EAE). Laquinimod reduced clinical and inflammatory manifestations and elevated the prevalence of T-regulatory cells in the brain. In untreated mice, in the chronic disease stage, brain derived neurotrophic factor (BDNF) expression was impaired. Laquinimod treatment restored BDNF expression to its level in healthy controls. Furthermore, CNS injury, manifested by astrogliosis, demyelination and axonal damages, was significantly reduced following laquinimod treatment, indicating its immunomodulatory and neuroprotective activity.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Wilfred Ndifon; Hilah Gal; Eric Shifrut; Rina Aharoni; Nissan Yissachar; Nir Waysbort; Shlomit Reich-Zeliger; Ruth Arnon; Nir Friedman
T cells play fundamental roles in adaptive immunity, relying on a diverse repertoire of T-cell receptor (TCR) α and β chains. Diversity of the TCR β chain is generated in part by a random yet intrinsically biased combinatorial rearrangement of variable (Vβ), diversity (Dβ), and joining (Jβ) gene segments. The mechanisms that determine biases in gene segment use remain unclear. Here we show, using a high-throughput TCR sequencing approach, that a physical model of chromatin conformation at the DJβ genomic locus explains more than 80% of the biases in Jβ use that we measured in murine T cells. This model also predicts correctly how differences in intersegment genomic distances between humans and mice translate into differences in Jβ bias between TCR repertoires of these two species. As a consequence of these structural and other biases, TCR sequences are produced with different a priori frequencies, thus affecting their probability of becoming public TCRs that are shared among individuals. Surprisingly, we find that many more TCR sequences are shared among all five mice we studied than among only subgroups of three or four mice. We derive a necessary mathematical condition explaining this finding, which indicates that the TCR repertoire contains a core set of receptor sequences that are highly abundant among individuals, if their a priori probability of being produced by the recombination process is higher than a defined threshold. Our results provide evidence for an expanded role of chromatin conformation in VDJ rearrangement, from control of gene accessibility to precise determination of gene segment use.