Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rinaldo Wellerson Pereira is active.

Publication


Featured researches published by Rinaldo Wellerson Pereira.


American Journal of Human Biology | 2009

Genetic Composition of Brazilian Population Samples Based on a Set of Twenty Eight Ancestry Informative SNPs

Tulio Cesar de Lima Lins; Rodrigo G. Vieira; Breno Silva de Abreu; Dario Grattapaglia; Rinaldo Wellerson Pereira

Ancestry informative SNPs can be useful to estimate individual and population biogeographical ancestry. Brazilian population is characterized by a genetic background of three parental populations (European, African, and Brazilian Native Amerindians) with a wide degree and diverse patterns of admixture. In this work we analyzed the information content of 28 ancestry‐informative SNPs into multiplexed panels using three parental population sources (African, Amerindian, and European) to infer the genetic admixture in an urban sample of the five Brazilian geopolitical regions. The SNPs assigned apart the parental populations from each other and thus can be applied for ancestry estimation in a three hybrid admixed population. Data was used to infer genetic ancestry in Brazilians with an admixture model. Pairwise estimates of Fst among the five Brazilian geopolitical regions suggested little genetic differentiation only between the South and the remaining regions. Estimates of ancestry results are consistent with the heterogeneous genetic profile of Brazilian population, with a major contribution of European ancestry (0.771) followed by African (0.143) and Amerindian contributions (0.085). The described multiplexed SNP panels can be useful tool for bioanthropological studies but it can be mainly valuable to control for spurious results in genetic association studies in admixed populations. Am. J. Hum. Biol., 2010.


PLOS Genetics | 2014

Modeling 3D Facial Shape from DNA

Peter Claes; Denise K Liberton; Katleen Daniels; Kerri Matthes Rosana; Ellen E. Quillen; Laurel N. Pearson; Brian McEvoy; Marc Bauchet; Arslan A Zaidi; Wei Yao; Hua Tang; Gregory S. Barsh; Devin Absher; David A. Puts; Jorge Rocha; Sandra Beleza; Rinaldo Wellerson Pereira; Gareth Baynam; Paul Suetens; Dirk Vandermeulen; Jennifer K. Wagner; James S. Boster; Mark D. Shriver

Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers.


BMC Plant Biology | 2009

Identification of candidate genome regions controlling disease resistance in Arachis

Soraya C. M. Leal-Bertioli; Ana Carolina V. F. Jose; Dione M. T. Alves-Freitas; Márcio C. Moretzsohn; Patricia M. Guimarães; Stephan Nielen; Bruna Vidigal; Rinaldo Wellerson Pereira; Jodie Pike; Alessandra Pereira Fávero; Martin Parniske; Rajeev K. Varshney; David J. Bertioli

BackgroundWorldwide, diseases are important reducers of peanut (Arachis hypogaea) yield. Sources of resistance against many diseases are available in cultivated peanut genotypes, although often not in farmer preferred varieties. Wild species generally harbor greater levels of resistance and even apparent immunity, although the linkage of agronomically un-adapted wild alleles with wild disease resistance genes is inevitable. Marker-assisted selection has the potential to facilitate the combination of both cultivated and wild resistance loci with agronomically adapted alleles. However, in peanut there is an almost complete lack of knowledge of the regions of the Arachis genome that control disease resistance.ResultsIn this work we identified candidate genome regions that control disease resistance. For this we placed candidate disease resistance genes and QTLs against late leaf spot disease on the genetic map of the A-genome of Arachis, which is based on microsatellite markers and legume anchor markers. These marker types are transferable within the genus Arachis and to other legumes respectively, enabling this map to be aligned to other Arachis maps and to maps of other legume crops including those with sequenced genomes. In total, 34 sequence-confirmed candidate disease resistance genes and five QTLs were mapped.ConclusionCandidate genes and QTLs were distributed on all linkage groups except for the smallest, but the distribution was not even. Groupings of candidate genes and QTLs for late leaf spot resistance were apparent on the upper region of linkage group 4 and the lower region of linkage group 2, indicating that these regions are likely to control disease resistance.


BMC Plant Biology | 2009

A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome.

Márcio C. Moretzsohn; Andrea V. G. Barbosa; Dione M. T. Alves-Freitas; Cristiane de Camargo Teixeira; Soraya C. M. Leal-Bertioli; Patricia M. Guimarães; Rinaldo Wellerson Pereira; Catalina Romero Lopes; Marcelo M. Cavallari; José Francisco Montenegro Valls; David J. Bertioli; Marcos A. Gimenes

BackgroundArachis hypogaea (peanut) is an important crop worldwide, being mostly used for edible oil production, direct consumption and animal feed. Cultivated peanut is an allotetraploid species with two different genome components, A and B. Genetic linkage maps can greatly assist molecular breeding and genomic studies. However, the development of linkage maps for A. hypogaea is difficult because it has very low levels of polymorphism. This can be overcome by the utilization of wild species of Arachis, which present the A- and B-genomes in the diploid state, and show high levels of genetic variability.ResultsIn this work, we constructed a B-genome linkage map, which will complement the previously published map for the A-genome of Arachis, and produced an entire framework for the tetraploid genome. This map is based on an F2 population of 93 individuals obtained from the cross between the diploid A. ipaënsis (K30076) and the closely related A. magna (K30097), the former species being the most probable B genome donor to cultivated peanut. In spite of being classified as different species, the parents showed high crossability and relatively low polymorphism (22.3%), compared to other interspecific crosses. The map has 10 linkage groups, with 149 loci spanning a total map distance of 1,294 cM. The microsatellite markers utilized, developed for other Arachis species, showed high transferability (81.7%). Segregation distortion was 21.5%. This B-genome map was compared to the A-genome map using 51 common markers, revealing a high degree of synteny between both genomes.ConclusionThe development of genetic maps for Arachis diploid wild species with A- and B-genomes effectively provides a genetic map for the tetraploid cultivated peanut in two separate diploid components and is a significant advance towards the construction of a transferable reference map for Arachis. Additionally, we were able to identify affinities of some Arachis linkage groups with Medicago truncatula, which will allow the transfer of information from the nearly-complete genome sequences of this model legume to the peanut crop.


BMC Genomics | 2014

Exercise induction of gut microbiota modifications in obese, non-obese and hypertensive rats

Bernardo A. Petriz; Alinne Pereira de Castro; Jeeser Alves de Almeida; Clarissa P. C. Gomes; Gabriel da Rocha Fernandes; Ricardo Henrique Kruger; Rinaldo Wellerson Pereira; Octávio Luís Franco

BackgroundObesity is a multifactor disease associated with cardiovascular disorders such as hypertension. Recently, gut microbiota was linked to obesity pathogenesisand shown to influence the host metabolism. Moreover, several factors such as host-genotype and life-style have been shown to modulate gut microbiota composition. Exercise is a well-known agent used for the treatment of numerous pathologies, such as obesity and hypertension; it has recently been demonstrated to shape gut microbiota consortia. Since exercise-altered microbiota could possibly improve the treatment of diseases related to dysfunctional microbiota, this study aimed to examine the effect of controlled exercise training on gut microbial composition in Obese rats (n = 3), non-obese Wistar rats (n = 3) and Spontaneously Hypertensive rats (n = 3). Pyrosequencing of 16S rRNA genes from fecal samples collected before and after exercise training was used for this purpose.ResultsExercise altered the composition and diversity of gut bacteria at genus level in all rat lineages. Allobaculum (Hypertensive rats), Pseudomonas and Lactobacillus (Obese rats) were shown to be enriched after exercise, while Streptococcus (Wistar rats), Aggregatibacter and Sutturella (Hypertensive rats) were more enhanced before exercise. A significant correlation was seen in the Clostridiaceae and Bacteroidaceae families and Oscillospira and Ruminococcus genera with blood lactate accumulation. Moreover, Wistar and Hypertensive rats were shown to share a similar microbiota composition, as opposed to Obese rats. Finally, Streptococcus alactolyticus, Bifidobacterium animalis, Ruminococcus gnavus, Aggregatibacter pneumotropica and Bifidobacterium pseudolongum were enriched in Obese rats.ConclusionsThese data indicate that non-obese and hypertensive rats harbor a different gut microbiota from obese rats and that exercise training alters gut microbiota from an obese and hypertensive genotype background.


Frontiers in Genetics | 2013

A Review of Computational Tools in microRNA Discovery

Clarissa P. C. Gomes; Ji-Hoon Cho; Leroy Hood; Octavio L. Franco; Rinaldo Wellerson Pereira; Kai Wang

Since microRNAs (miRNAs) were discovered, their impact on regulating various biological activities has been a surprising and exciting field. Knowing the entire repertoire of these small molecules is the first step to gain a better understanding of their function. High throughput discovery tools such as next-generation sequencing significantly increased the number of known miRNAs in different organisms in recent years. However, the process of being able to accurately identify miRNAs is still a complex and difficult task, requiring the integration of experimental approaches with computational methods. A number of prediction algorithms based on characteristics of miRNA molecules have been developed to identify new miRNA species. Different approaches have certain strengths and weaknesses and in this review, we aim to summarize several commonly used tools in metazoan miRNA discovery.


Frontiers in Genetics | 2013

The complexity, function and applications of RNA in circulation

Alton Etheridge; Clarissa P. C. Gomes; Rinaldo Wellerson Pereira; David J. Galas; Kai Wang

Blood carries a wide array of biomolecules, including nutrients, hormones, and molecules that are secreted by cells for specific biological functions. The recent finding of stable RNA of both endogenous and exogenous origin in circulation raises a number of questions and opens a broad, new field: exploring the origins, functions, and applications of these extracellular RNA molecules. These findings raise many important questions, including: what are the mechanisms of export and cellular uptake, what is the nature and source of their stability, what molecules do they interact with in the blood, and what are the possible biological functions of the circulating RNA? This review summarizes some key recent developments in circulating RNA research and discusses some of the open questions in the field.


Journal of Epidemiology | 2011

Genetic Heterogeneity of Self-Reported Ancestry Groups in an Admixed Brazilian Population

Tulio Cesar de Lima Lins; Rodrigo G. Vieira; Breno Silva de Abreu; Paulo Gentil; Ricardo Moreno-Lima; Ricardo Jacó de Oliveira; Rinaldo Wellerson Pereira

Background Population stratification is the main source of spurious results and poor reproducibility in genetic association findings. Population heterogeneity can be controlled for by grouping individuals in ethnic clusters; however, in admixed populations, there is evidence that such proxies do not provide efficient stratification control. The aim of this study was to evaluate the relation of self-reported with genetic ancestry and the statistical risk of grouping an admixed sample based on self-reported ancestry. Methods A questionnaire that included an item on self-reported ancestry was completed by 189 female volunteers from an admixed Brazilian population. Individual genetic ancestry was then determined by genotyping ancestry informative markers. Results Self-reported ancestry was classified as white, intermediate, and black. The mean difference among self-reported groups was significant for European and African, but not Amerindian, genetic ancestry. Pairwise fixation index analysis revealed a significant difference among groups. However, the increase in the chance of type 1 error was estimated to be 14%. Conclusions Self-reporting of ancestry was not an appropriate methodology to cluster groups in a Brazilian population, due to high variance at the individual level. Ancestry informative markers are more useful for quantitative measurement of biological ancestry.


PLOS ONE | 2011

Genomic Ancestry, Self-Reported “Color” and Quantitative Measures of Skin Pigmentation in Brazilian Admixed Siblings

Tailce Kaley Moura Leite; Romulo Maia Carlos Fonseca; Nanci Maria de França; Esteban J. Parra; Rinaldo Wellerson Pereira

A current concern in genetic epidemiology studies in admixed populations is that population stratification can lead to spurious results. The Brazilian census classifies individuals according to self-reported “color”, but several studies have demonstrated that stratifying according to “color” is not a useful strategy to control for population structure, due to the dissociation between self-reported “color” and genomic ancestry. We report the results of a study in a group of Brazilian siblings in which we measured skin pigmentation using a reflectometer, and estimated genomic ancestry using 21 Ancestry Informative Markers (AIMs). Self-reported “color”, according to the Brazilian census, was also available for each participant. This made it possible to evaluate the relationship between self-reported “color” and skin pigmentation, self-reported “color” and genomic ancestry, and skin pigmentation and genomic ancestry. We observed that, although there were significant differences between the three “color” groups in genomic ancestry and skin pigmentation, there was considerable dispersion within each group and substantial overlap between groups. We also saw that there was no good agreement between the “color” categories reported by each member of the sibling pair: 30 out of 86 sibling pairs reported different “color”, and in some cases, the sibling reporting the darker “color” category had lighter skin pigmentation. Socioeconomic status was significantly associated with self-reported “color” and genomic ancestry in this sample. This and other studies show that subjective classifications based on self-reported “color”, such as the one that is used in the Brazilian census, are inadequate to describe the population structure present in recently admixed populations. Finally, we observed that one of the AIMs included in the panel (rs1426654), which is located in the known pigmentation gene SLC24A5, was strongly associated with skin pigmentation in this sample.


International Journal of Sports Medicine | 2011

ACE and ACTN3 Genotypes in Older Women: Muscular Phenotypes

Ricardo Moreno Lima; T. K. M. Leite; Rinaldo Wellerson Pereira; H. T. Rabelo; Stephen M. Roth; Ricardo Jacó de Oliveira

This study examined the association between ACE I/D and ACTN3 R577X polymorphisms and muscle-related phenotypes and their adaptation to resistance training in older women. Volunteers (n=246;age=66.7 ± 5.5 years) underwent quadriceps strength assessment using isokinetics and fat-free mass by dual energy X-ray absorptiometry. 79 volunteers performed 24 weeks of resistance training and 75 were studied as controls. Genotypes were identified by standard procedures. No associations were observed for muscle strength for either gene, but volunteers carrying the D/D genotype presented higher appendicular fat-free mass compared to the I-allele carriers (6.3 ± 0.1 vs. 6.1 ± 0.1 kg/m (2)). The X-allele carriers presented higher relative fat-free mass when compared to homozygous R/R (16.3 ± 0.1 vs. 15.9 ± 0.1 kg/m (2)). All fat-free mass variables were significantly greater for carriers of both X/X and D/D genotypes. In response to RT, only the I-allele carriers significantly increased fat-free mass and a significant training × genotype interaction was noted. These findings do not support a pivotal role for the studied polymorphisms in determining muscle strength in older women, but suggest a modest role in fat-free mass determination. Of note, the results provide a novel insight that these genetic variations may interact to determine muscle mass in older women.

Collaboration


Dive into the Rinaldo Wellerson Pereira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tulio Cesar de Lima Lins

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Clarissa P. C. Gomes

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Octavio L. Franco

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Paulo Gentil

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar

Tailce Kaley Moura Leite

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Bernardo A. Petriz

Universidade Católica de Brasília

View shared research outputs
Top Co-Authors

Avatar

Jeeser Alves de Almeida

Federal University of Mato Grosso do Sul

View shared research outputs
Top Co-Authors

Avatar

Nanci Maria de França

Universidade Católica de Brasília

View shared research outputs
Researchain Logo
Decentralizing Knowledge