Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rintaro Suzuki is active.

Publication


Featured researches published by Rintaro Suzuki.


The Plant Cell | 2012

Rhizobial and Fungal Symbioses Show Different Requirements for Calmodulin Binding to Calcium Calmodulin–Dependent Protein Kinase in Lotus japonicus

Yoshikazu Shimoda; Lu Han; Toshimasa Yamazaki; Rintaro Suzuki; Makoto Hayashi; Haruko Imaizumi-Anraku

Leguminous plants have mutualistic symbiotic relationships with rhizobial bacteria and arbuscular mycorrhizal fungi. These two distinct symbioses share calcium calmodulin–dependent protein kinase (CCaMK), a key regulator for accommodation of bacterial and fungal symbionts. This article demonstrates that the two symbioses are distinguished by differential regulation of CCaMK by calmodulin binding. Ca2+/calmodulin (CaM)–dependent protein kinase (CCaMK) is a key regulator of root nodule and arbuscular mycorrhizal symbioses and is believed to be a decoder for Ca2+ signals induced by microbial symbionts. However, it is unclear how CCaMK is activated by these microbes. Here, we investigated in vivo activation of CCaMK in symbiotic signaling, focusing mainly on the significance of and epistatic relationships among functional domains of CCaMK. Loss-of-function mutations in EF-hand motifs revealed the critical importance of the third EF hand for CCaMK activation to promote infection of endosymbionts. However, a gain-of-function mutation (T265D) in the kinase domain compensated for these loss-of-function mutations in the EF hands. Mutation of the CaM binding domain abolished CaM binding and suppressed CCaMKT265D activity in rhizobial infection, but not in mycorrhization, indicating that the requirement for CaM binding to CCaMK differs between root nodule and arbuscular mycorrhizal symbioses. Homology modeling and mutagenesis studies showed that the hydrogen bond network including Thr265 has an important role in the regulation of CCaMK. Based on these genetic, biochemical, and structural studies, we propose an activation mechanism of CCaMK in which root nodule and arbuscular mycorrhizal symbioses are distinguished by differential regulation of CCaMK by CaM binding.


Journal of Molecular Biology | 2003

Three-dimensional Solution Structure of an Archaeal FKBP with a Dual Function of Peptidyl Prolyl cis-trans Isomerase and Chaperone-like Activities

Rintaro Suzuki; Koji Nagata; Fumiaki Yumoto; Masaru Kawakami; Nobuaki Nemoto; Masahiro Furutani; Kyoko Adachi; Tadashi Maruyama; Masaru Tanokura

Here we report the solution structure of an archaeal FK506-binding protein (FKBP) from a thermophilic archaeum, Methanococcus thermolithotrophicus (MtFKBP17), which has peptidyl prolyl cis-trans isomerase (PPIase) and chaperone-like activities, to reveal the structural basis for the dual function. In addition to a typical PPIase domain, a newly identified domain is formed in the flap loop by a 48-residue insert that is required for the chaperone-like activity. The new domain, called IF domain (the Insert in the Flap), is a novel-folding motif and exposes a hydrophobic surface, which we consider to play an important role in the chaperone-like activity.


Frontiers in Bioscience | 2004

ARCHAEAL PEPTIDYL PROLYL CIS-TRANS ISOMERASES (PPIases) Update 2004

Tadashi Maruyama; Rintaro Suzuki; Masahiro Furutani

PPIases are ubiquitous in living organisms. While three families of PPIases, cyclophilin (CyP), FK506 binding protein (FKBP) and parvulin (Pvn), have been studied in detail in Eukarya and Bacteria (eubacteria), little is known about archaeal PPIases. Among 13 cyclophilins found in Archaea, only Halobacterium cyclophilin (HbsCyP19) has been characterized. This is a cyclosporin A (CsA) sensitive CyP with a molecular weight of 19.4 kDa. The PPIase activity and CsA sensitivity of HbsCyP19 is higher at higher salt concentration in the medium. No parvulin except a homolog in Cenarchaeum symbiosum has been found in Archaea. Two types of FKBPs, 26-30 kDa long-type and 17-18 kDa short-type FKBP, have been found in Archaea. Up to date, 12 short-type FKBPs and 18 long-type FKBPs have been known. The short-type FKBPs and N-terminal sequences of the long-type FKBPs are similar to each other and show homology to human FKBP12 (HsFKBP12). However, they have two insertion sequences in the regions corresponding to bulge and flap loops of HsFKBP12. The long-type archaeal FKBPs have additional ca. 100 amino-acid sequences at their C-terminal regions. A short-type archaeal FKBP from Methanothermococcus thermolithotrophicus has not only a PPIase activity but also a chaperone-like activity, which includes protein refolding and aggregation suppressing activities with regard to protein folding intermediates. Mutational analysis revealed that this chaperone-like activity was independent of the PPIase activity, and that the insertion sequence in the region corresponding to the flap seemed to be important. Three-dimensional structure of this FKBP showed that the insertion in the flap makes a domain which has a hydrophobic surface. Coexpression of aggregation prone proteins with these archaeal FKBPs were shown to improve their expression in soluble fraction in Escherichia coli. Fusion protein of the archaeal FKBP and an aggregation prone protein also show improved expression of the latter in E. coli.


Comparative Immunology Microbiology and Infectious Diseases | 2010

Host-virus specificity of morbilliviruses predicted by structural modeling of the marine mammal SLAM, a receptor.

Kazue Ohishi; Akiko Ando; Rintaro Suzuki; Kiyotaka Takishita; Masaru Kawato; Etsuko Katsumata; Dai Ohtsu; Kenji Okutsu; Koji Tokutake; Hirokazu Miyahara; Hirotaka Nakamura; Tsukasa Murayama; Tadashi Maruyama

Signaling lymphocyte activation molecule (SLAM) is thought to be a major cellular receptor for high-host specificity morbilliviruses, which cause devastating and highly infectious diseases in mammals. We determined the sequences of SLAM cDNA from five species of marine mammal, including two cetaceans, two pinnipeds and one sirenian, and generated three-dimensional models to understand the receptor-virus interaction. Twenty-one amino acid residues in the immunoglobulin-like V domains of the SLAMs were shown to bind the viral protein. Notably, the sequences from pinnipeds and dogs were highly homologous, which is consistent with the fact that canine distemper virus was previously shown to cause a mass die-off of seals. Among these twenty-one residues, eight (63, 66, 68, 72, 84, 119, 121 and 130) were shared by animal groups susceptible to a particular morbillivirus species. This set of residues appears to determine host-virus specificity and may be useful for risk estimation for morbilliviruses.


Extremophiles | 2006

Contribution of the C-terminal region to the thermostability of the archaeal group II chaperonin from Thermococcus sp. strain KS-1

Takao Yoshida; Taro Kanzaki; Ryo Iizuka; Toshihiro Komada; Tamotsu Zako; Rintaro Suzuki; Tadashi Maruyama; Masafumi Yohda

Chaperonin is a double ring-shaped oligomeric protein complex, which captures a protein in the folding intermediate state and assists its folding in an ATP-dependent manner. The chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, is a group II chaperonin and is composed of two distinct subunits, α and β. Although these subunits are highly homologous in sequence, the homo-oligomer of the β-subunit is more thermostable than that of the α-subunit. To identify the region responsible for this difference in thermostability, we constructed domain-exchange mutants. The mutants containing the equatorial domain of the β-subunit were more resistant to thermal dissociation than the mutants with that of the α-subunit. Thermostability of a β-subunit mutant whose C-terminal 22 residues were replaced with those of the α-subunit decreased to the comparable level of that of the α-subunit homo-oligomer. These results indicate that the difference in thermostability between α- and β-subunits mainly originates in the C-terminal residues in the equatorial domain, only where they exhibit substantial sequence difference.


Scientific Reports | 2011

Structural mechanism of JH delivery in hemolymph by JHBP of silkworm, Bombyx mori

Rintaro Suzuki; Zui Fujimoto; Takahiro Shiotsuki; Wataru Tsuchiya; Mitsuru Momma; Akira Tase; Mitsuhiro Miyazawa; Toshimasa Yamazaki

Juvenile hormone (JH) plays crucial roles in many aspects of the insect life. All the JH actions are initiated by transport of JH in the hemolymph as a complex with JH-binding protein (JHBP) to target tissues. Here, we report structural mechanism of JH delivery by JHBP based upon the crystal and solution structures of apo and JH-bound JHBP. In solution, apo-JHBP exists in equilibrium of multiple conformations with different orientations of the gate helix for the hormone-binding pocket ranging from closed to open forms. JH-binding to the gate-open form results in the fully closed JHBP-JH complex structure where the bound JH is completely buried inside the protein. JH-bound JHBP opens the gate helix to release the bound hormone likely by sensing the less polar environment at the membrane surface of target cells. This is the first report that provides structural insight into JH signaling.


Journal of Wildlife Diseases | 2014

RECENT HOST RANGE EXPANSION OF CANINE DISTEMPER VIRUS AND VARIATION IN ITS RECEPTOR, THE SIGNALING LYMPHOCYTE ACTIVATION MOLECULE, IN CARNIVORES

Kazue Ohishi; Rintaro Suzuki; Taro Maeda; Miwako Tsuda; Erika Abe; Takao Yoshida; Yasuyuki Endo; Maki Okamura; Takashi Nagamine; Hanae Yamamoto; Miya Ueda; Tadashi Maruyama

Abstract The signaling lymphocyte activation molecule (SLAM) is a receptor for morbilliviruses. To understand the recent host range expansion of canine distemper virus (CDV) in carnivores, we determined the nucleotide sequences of SLAMs of various carnivores and generated three-dimensional homology SLAM models. Thirty-four amino acid residues were found for the candidates binding to CDV on the interface of the carnivore SLAMs. SLAM of the domestic dog (Canis lupus familiaris) were similar to those of other members of the suborder Caniformia, indicating that the animals in this group have similar sensitivity to dog CDV. However, they were different at nine positions from those of felids. Among the nine residues, four of domestic cat (Felis catus) SLAM (72, 76, 82, and 129) and three of lion (Panthera leo persica) SLAM (72, 82, and 129) were associated with charge alterations, suggesting that the felid interfaces have lower affinities to dog CDV. Only the residue at 76 was different between domestic cat and lion SLAM interfaces. The domestic cat SLAM had threonine at 76, whereas the lion SLAM had arginine, a positively charged residue like that of the dog SLAM. The cat SLAM with threonine is likely to have lower affinity to CDV-H and to confer higher resistance against dog CDV. Thus, the four residues (72, 76, 82, and 129) on carnivore SLAMs are important for the determination of affinity and sensitivity with CDV. Additionally, the CDV-H protein of felid strains had a substitution of histidine for tyrosine at 549 of dog CDV-H and may have higher affinity to lion SLAM. Three-dimensional model construction is a new risk assessment method of morbillivirus infectivity. Because the method is applicable to animals that have no information about virus infection, it is especially useful for morbillivirus risk assessment and wildlife conservation.


Environmental Microbiology | 2014

Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens

Kasumi Takeuchi; Wataru Tsuchiya; Naomi Noda; Rintaro Suzuki; Toshimasa Yamazaki; Dieter Haas

In Pseudomonas protegens CHA0 and other fluorescent pseudomonads, the Gac/Rsm signal transduction pathway controls secondary metabolism and suppression of fungal root pathogens via the expression of regulatory small RNAs (sRNAs). Because of its high cost, this pathway needs to be protected from overexpression and to be turned off in response to environmental stress such as the lack of nutrients. However, little is known about its underlying molecular mechanisms. In this study, we demonstrated that Lon protease, a member of the ATP-dependent protease family, negatively regulated the Gac/Rsm cascade. In a lon mutant, the steady-state levels and the stability of the GacA protein were significantly elevated at the end of exponential growth. As a consequence, the expression of the sRNAs RsmY and RsmZ and that of dependent physiological functions such as antibiotic production were significantly enhanced. Biocontrol of Pythium ultimum on cucumber roots required fewer lon mutant cells than wild-type cells. In starved cells, the loss of Lon function prolonged the half-life of the GacA protein. Thus, Lon protease is an important negative regulator of the Gac/Rsm signal transduction pathway in P. protegens.


Microbiology and Immunology | 2013

Amino acid sequence variations of signaling lymphocyte activation molecule and mortality caused by morbillivirus infection in cetaceans

Yui Shimizu; Kazue Ohishi; Rintaro Suzuki; Yuko Tajima; Tadasu K. Yamada; Yuka Kakizoe; Takeharu Bando; Yoshihiro Fujise; Hajime Taru; Tsukasa Murayama; Tadashi Maruyama

Morbillivirus infection is a severe threat to marine mammals. Mass die‐offs caused by this infection have repeatedly occurred in bottlenose dolphins (Turiops truncatus) and striped dolphins (Stenella coeruleoalba), both of which belong to the family Delphinidae, but not in other cetaceans. However, it is unknown whether sensitivity to the virus varies among cetacean species. The signaling lymphocyte activation molecule (SLAM) is a receptor on host cells that allows morbillivirus invasion and propagation. Its immunoguloblin variable domain‐like (V) region provides an interface for the virus hemagglutinin (H) protein. In this study, variations in the amino acid residues of the V region of 26 cetacean species, covering almost all cetacean genera, were examined. Three‐dimensional (3D) models of them were generated in a homology model using the crystal structure of the marmoset SLAM and measles virus H protein complex as a template. The 3D models showed 32 amino acid residues on the interface that possibly bind the morbillivirus. Among the cetacean species studied, variations were found at six of the residues. Bottlenose and striped dolphins have substitutions at five positions (E68G, I74V, R90H, V126I, and Q130H) compared with those of baleen whales. Three residues (at positions 68, 90 and 130) were found to alternate electric charges, possibly causing changes in affinity for the virus. This study shows a new approach based on receptor structure for assessing potential vulnerability to viral infection. This method may be useful for assessing the risk of morbillivirus infection in wildlife.


Biomolecular Nmr Assignments | 2009

NMR assignments of juvenile hormone binding protein in complex with JH III

Rintaro Suzuki; Akira Tase; Zui Fujimoto; Takahiro Shiotsuki; Toshimasa Yamazaki

A hemolymph juvenile hormone binding protein (JHBP) shuttles hydrophobic JH, a key hormone in regulation of the insect life cycle, from the site of the JH biosynthesis to the cells of target organs. We report complete NMR chemical shift assignments of Bombyx mori JHBP in the JH III-bound state.

Collaboration


Dive into the Rintaro Suzuki's collaboration.

Top Co-Authors

Avatar

Toshimasa Yamazaki

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tadashi Maruyama

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wataru Tsuchiya

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazue Ohishi

Japan Agency for Marine-Earth Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Zui Fujimoto

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge