Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rintis Noviyanti is active.

Publication


Featured researches published by Rintis Noviyanti.


Science Translational Medicine | 2013

Quinolone-3-Diarylethers: A New Class of Antimalarial Drug

Aaron Nilsen; Alexis N. LaCrue; Karen L. White; Isaac P. Forquer; R. Matthew Cross; Jutta Marfurt; Michael W. Mather; Michael J. Delves; David M. Shackleford; Fabián E. Sáenz; Joanne M. Morrisey; Jessica Steuten; Tina Mutka; Yuexin Li; Grennady Wirjanata; Eileen Ryan; Sandra Duffy; Jane Xu Kelly; Boni F. Sebayang; Anne-Marie Zeeman; Rintis Noviyanti; Robert E. Sinden; Clemens H. M. Kocken; Ric N. Price; Vicky M. Avery; Iñigo Angulo-Barturen; María Belén Jiménez-Díaz; Santiago Ferrer; Esperanza Herreros; Laura Sanz

ELQ-300, an investigational drug for treating and preventing malaria, shows potent transmission-blocking activity in rodent models of malaria. Taking the Bite Out of Malaria Malaria is spread from person to person by mosquitoes that inject 8 to 10 sporozoite forms of the parasite in a single bite. The sporozoites reproduce in the liver to produce 10,000 to 30,000 merozoites before the liver schizont ruptures and parasites flood into the bloodstream where the absolute parasite burden may increase to a thousand billion (1012) circulating parasites. Some of these parasites develop into gametocytes that may be ingested by another mosquito where they progress through ookinete, oocyst, and sporozoite stages to complete the cycle. Like quinine, most antimalarial drugs in use today target only the symptomatic blood stage. The efficacy of these drugs has been compromised by resistance, and so there is a pressing need for new drugs that target multiple stages of the parasite life cycle for use in malaria treatment and prevention. Clearly, it is advantageous to strike at the liver stage where parasite numbers are low, to diminish the likelihood of selecting for a resistant mutant and before the infection has a chance to weaken the defenses of the human host. In a new study, Nilsen and colleagues describe ELQ-300, a 4(1H)-quinolone-3-diarylether, which targets the liver and blood stages, including the forms that are crucial to disease transmission (gametocytes, zygotes, and ookinetes). In mouse models of malaria, a single oral dose of 0.03 mg/kg prevented sporozoite-induced infections, whereas four daily doses of 1 mg/kg achieved complete cures of patent infections. ELQ-300 is a preclinical candidate that may be coformulated with other antimalarials to prevent and treat malaria, with the potential to aid in eradication of the disease. The goal for developing new antimalarial drugs is to find a molecule that can target multiple stages of the parasite’s life cycle, thus impacting prevention, treatment, and transmission of the disease. The 4(1H)-quinolone-3-diarylethers are selective potent inhibitors of the parasite’s mitochondrial cytochrome bc1 complex. These compounds are highly active against the human malaria parasites Plasmodium falciparum and Plasmodium vivax. They target both the liver and blood stages of the parasite as well as the forms that are crucial for disease transmission, that is, the gametocytes, the zygote, the ookinete, and the oocyst. Selected as a preclinical candidate, ELQ-300 has good oral bioavailability at efficacious doses in mice, is metabolically stable, and is highly active in blocking transmission in rodent models of malaria. Given its predicted low dose in patients and its predicted long half-life, ELQ-300 has potential as a new drug for the treatment, prevention, and, ultimately, eradication of human malaria.


Nature | 2015

A novel multiple-stage antimalarial agent that inhibits protein synthesis

Beatriz Baragaña; Irene Hallyburton; Marcus C. S. Lee; Neil R. Norcross; Raffaella Grimaldi; Thomas D. Otto; William R. Proto; Andrew M. Blagborough; Stephan Meister; Grennady Wirjanata; Andrea Ruecker; Leanna M. Upton; Tara S. Abraham; Mariana Justino de Almeida; Anupam Pradhan; Achim Porzelle; María Santos Martínez; Judith M. Bolscher; Andrew Woodland; Suzanne Norval; Fabio Zuccotto; John Thomas; Frederick R. C. Simeons; Laste Stojanovski; Maria Osuna-Cabello; Patrick M. Brock; Thomas S. Churcher; Katarzyna A. Sala; Sara E. Zakutansky; María Belén Jiménez-Díaz

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Molecular Microbiology | 2005

Broad analysis reveals a consistent pattern of var gene transcription in Plasmodium falciparum repeatedly selected for a defined adhesion phenotype.

Michael F. Duffy; Timothy J. Byrne; Salenna R. Elliott; Danny W. Wilson; Stephen J. Rogerson; James G. Beeson; Rintis Noviyanti; Graham V. Brown

Transcription of the majority of the members of the Plasmodium falciparum var multigene family were analysed in two isolates by a quantitative approach. Both of these isolates had been repeatedly selected for adhesion to chondroitin sulphate A (CSA) and one had also been selected for adhesion to hyaluronic acid (HA). These adhesion phenotypes are expressed by many parasites isolated from placentae and are associated with malaria disease in pregnancy. Increased transcription of the var gene var2csa, or its homologue IT4 var4, was associated with the CSA and HA adhesion phenotypes in all parasites suggesting that it was the dominant, if not the only, var gene that encoded adhesion to CSA in these allogeneic isolates. Some var genes were consistently transcribed at higher levels than others regardless of expressed adhesion phenotypes suggesting a transcriptional hierarchy. Unspliced or partial transcripts were detected for most var genes tested. These atypical var gene transcripts may have implications for the regulation of var gene transcription.


Infection and Immunity | 2006

Transcribed var Genes Associated with Placental Malaria in Malawian Women

Michael F. Duffy; Aphrodite Caragounis; Rintis Noviyanti; Helen M. Kyriacou; Ee Ken Choong; Katja E. Boysen; Julie Healer; J. Alexandra Rowe; Malcolm E. Molyneux; Graham V. Brown; Stephen J. Rogerson

ABSTRACT Determining the diversity of PfEMP1 sequences expressed by Plasmodium falciparum-infected erythrocytes isolated from placentas is important for attempts to develop a pregnancy-specific malaria vaccine. The DBLγ and var2csa DBL3x domains of PfEMP1 molecules are believed to mediate placental sequestration of infected erythrocytes, so the sequences encoding these domains were amplified from the cDNAs of placental parasites by using degenerate oligonucleotides. The levels of specific var cDNAs were then determined by quantitative reverse transcription-PCR. Homologues of var2csa DBL3x were the predominant sequences amplified from the cDNAs of most placental but not most childrens parasites. There was 56% identity between all placental var2csa sequences. Many different DBLγ domains were amplified from the cDNAs of placental and childrens isolates. var2csa transcripts were the most abundant var transcripts of those tested in 11 of 12 placental isolates and 1 of 6 childrens isolates. Gravidity did not affect the levels of var2csa transcripts. We concluded that placental malaria is frequently associated with transcription of var2csa but that other var genes are also expressed, and parasites expressing high levels of var2csa are not restricted to pregnant women. The diversity of var2csa sequences may be important for understanding immunity and for the development of vaccines for malaria during pregnancy.


Molecular Microbiology | 2002

Transcription of multiple var genes by individual, trophozoite-stage Plasmodium falciparum cells expressing a chondroitin sulphate A binding phenotype

Michael F. Duffy; Graham V. Brown; Wanny Basuki; Efrosinia O. Krejany; Rintis Noviyanti; Alan F. Cowman; John C. Reeder

In this study, we detected multiple var gene transcripts within single, mature trophozoite‐infected red blood cells (iRBCs) bound to chondroitin sulphate A (CSA). Several of the var detected had previously been demonstrated to encode Plasmodium falciparum erythrocyte membrane protein‐1 (PfEMP‐1) variants with domains that mediated iRBC adhesion to receptors other than CSA. Parasites expressing the CSA‐adherent phenotype transcribed far more of one var than of all others, but this gene was different from the two other var previously purported to encode adhesion to CSA. Previous work suggesting that only single var are transcribed by mature trophozoites needs re‐examination in the light of these data from single, infected cells.


Molecular and Biochemical Parasitology | 2001

Multiple var gene transcripts are expressed in Plasmodium falciparum infected erythrocytes selected for adhesion

Rintis Noviyanti; Graham V. Brown; Mark E. Wickham; Michael F. Duffy; Alan F. Cowman; John C. Reeder

Adherence of Plasmodium falciparum-infected erythrocytes to the post-capillary endothelium is an important characteristic of malaria infection. The adhesion is mediated predominantly by P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1), a clonally variant protein expressed on the surface of infected red blood cells that appears to be a target of protective immunity. A multi-membered var gene family encodes PfEMP1 and switching expression of different var genes conveys different antigenic and adhesive properties to infected red blood cells. Knowledge about transcriptional control of phenotypic expression, or the mechanisms that allow multiple binding specificities, is very limited. Here, we describe a series of phenotypic selection experiments, which resulted in the expression of different PfEMP1 and the detection of multiple full-length var gene transcripts in the mature trophozoite stage. However, a dominant form of PfEMP1 appeared to be expressed, which suggested that most var transcripts do not lead to a surface expressed PfEMP1 molecule. Parasites bound to specific receptors still expressed multiple full-length var genes and mature trophozoites selected for increased adhesion to a specific receptor retained the ability to bind to multiple receptors. Our findings suggest that a defined adhesive phenotype can be associated with expression of multiple var genes.


Nature Genetics | 2016

Genomic analysis of local variation and recent evolution in Plasmodium vivax

Richard D. Pearson; Roberto Amato; Sarah Auburn; Olivo Miotto; Jacob Almagro-Garcia; Chanaki Amaratunga; Seila Suon; Sivanna Mao; Rintis Noviyanti; Hidayat Trimarsanto; Jutta Marfurt; Nicholas M. Anstey; Timothy William; Maciej F. Boni; Christiane Dolecek; Hien Tinh Tran; Nicholas J. White; Pascal Michon; Peter Siba; Livingstone Tavul; Gabrielle Harrison; Alyssa E. Barry; Ivo Mueller; Marcelo U. Ferreira; Nadira D. Karunaweera; Milijaona Randrianarivelojosia; Qi Gao; Christina Hubbart; Lee Hart; Ben Jeffery

The widespread distribution and relapsing nature of Plasmodium vivax infection present major challenges for the elimination of malaria. To characterize the genetic diversity of this parasite in individual infections and across the population, we performed deep genome sequencing of >200 clinical samples collected across the Asia-Pacific region and analyzed data on >300,000 SNPs and nine regions of the genome with large copy number variations. Individual infections showed complex patterns of genetic structure, with variation not only in the number of dominant clones but also in their level of relatedness and inbreeding. At the population level, we observed strong signals of recent evolutionary selection both in known drug resistance genes and at new loci, and these varied markedly between geographical locations. These findings demonstrate a dynamic landscape of local evolutionary adaptation in the parasite population and provide a foundation for genomic surveillance to guide effective strategies for control and elimination of P. vivax.


PLOS Neglected Tropical Diseases | 2015

Contrasting Transmission Dynamics of Co-endemic Plasmodium vivax and P. falciparum: Implications for Malaria Control and Elimination.

Rintis Noviyanti; Farah N. Coutrier; Retno A. S. Utami; Hidayat Trimarsanto; Yusrifar K. Tirta; Leily Trianty; Andreas Kusuma; Inge Sutanto; Ayleen Kosasih; Rita Kusriastuti; William A. Hawley; Ferdinand Laihad; Neil F. Lobo; Jutta Marfurt; Taane G. Clark; Ric N. Price; Sarah Auburn

Background Outside of Africa, P. falciparum and P. vivax usually coexist. In such co-endemic regions, successful malaria control programs have a greater impact on reducing falciparum malaria, resulting in P. vivax becoming the predominant species of infection. Adding to the challenges of elimination, the dormant liver stage complicates efforts to monitor the impact of ongoing interventions against P. vivax. We investigated molecular approaches to inform the respective transmission dynamics of P. falciparum and P. vivax and how these could help to prioritize public health interventions. Methodology/ Principal Findings Genotype data generated at 8 and 9 microsatellite loci were analysed in 168 P. falciparum and 166 P. vivax isolates, respectively, from four co-endemic sites in Indonesia (Bangka, Kalimantan, Sumba and West Timor). Measures of diversity, linkage disequilibrium (LD) and population structure were used to gauge the transmission dynamics of each species in each setting. Marked differences were observed in the diversity and population structure of P. vivax versus P. falciparum. In Bangka, Kalimantan and Timor, P. falciparum diversity was low, and LD patterns were consistent with unstable, epidemic transmission, amenable to targeted intervention. In contrast, P. vivax diversity was higher and transmission appeared more stable. Population differentiation was lower in P. vivax versus P. falciparum, suggesting that the hypnozoite reservoir might play an important role in sustaining local transmission and facilitating the spread of P. vivax infections in different endemic settings. P. vivax polyclonality varied with local endemicity, demonstrating potential utility in informing on transmission intensity in this species. Conclusions/ Significance Molecular approaches can provide important information on malaria transmission that is not readily available from traditional epidemiological measures. Elucidation of the transmission dynamics circulating in a given setting will have a major role in prioritising malaria control strategies, particularly against the relatively neglected non-falciparum species.


PLOS ONE | 2013

Effective Preparation of Plasmodium vivax Field Isolates for High-Throughput Whole Genome Sequencing

Sarah Auburn; Jutta Marfurt; Gareth Maslen; Susana Campino; Valentin Ruano Rubio; Magnus Manske; Barbara Machunter; Rintis Noviyanti; Leily Trianty; Boni F. Sebayang; Grennady Wirjanata; Kanlaya Sriprawat; Daniel Alcock; Bronwyn MacInnis; Olivo Miotto; Taane G. Clark; Bruce Russell; Nicholas M. Anstey; François Nosten; Dominic P. Kwiatkowski; Ric N. Price

Whole genome sequencing (WGS) of Plasmodium vivax is problematic due to the reliance on clinical isolates which are generally low in parasitaemia and sample volume. Furthermore, clinical isolates contain a significant contaminating background of host DNA which confounds efforts to map short read sequence of the target P. vivax DNA. Here, we discuss a methodology to significantly improve the success of P. vivax WGS on natural (non-adapted) patient isolates. Using 37 patient isolates from Indonesia, Thailand, and travellers, we assessed the application of CF11-based white blood cell filtration alone and in combination with short term ex vivo schizont maturation. Although CF11 filtration reduced human DNA contamination in 8 Indonesian isolates tested, additional short-term culture increased the P. vivax DNA yield from a median of 0.15 to 6.2 ng µl−1 packed red blood cells (pRBCs) (p = 0.001) and reduced the human DNA percentage from a median of 33.9% to 6.22% (p = 0.008). Furthermore, post-CF11 and culture samples from Thailand gave a median P. vivax DNA yield of 2.34 ng µl−1 pRBCs, and 2.65% human DNA. In 22 P. vivax patient isolates prepared with the 2-step method, we demonstrate high depth (median 654X coverage) and breadth (≥89%) of coverage on the Illumina GAII and HiSeq platforms. In contrast to the A+T-rich P. falciparum genome, negligible bias was observed in coverage depth between coding and non-coding regions of the P. vivax genome. This uniform coverage will greatly facilitate the detection of SNPs and copy number variants across the genome, enabling unbiased exploration of the natural diversity in P. vivax populations.


PLOS ONE | 2013

Platelet Activation Determines Angiopoietin-1 and VEGF Levels in Malaria : Implications for Their Use as Biomarkers

Judith Brouwers; Rintis Noviyanti; Rob Fijnheer; Philip G. de Groot; Leily Trianty; Siti Mudaliana; Mark Roest; Din Syafruddin; Andre van der Ven; Quirijn de Mast

Introduction The angiogenic proteins angiopoietin (Ang)-1, Ang-2 and vascular endothelial growth factor (VEGF) are regulators of endothelial inflammation and integrity. Since platelets store large amounts of Ang-1 and VEGF, measurement of circulation levels of these proteins is sensitive to platelet number, in vivo platelet activation and inadvertent platelet activation during blood processing. We studied plasma Ang-1, Ang-2 and VEGF levels in malaria patients, taking the necessary precautions to avoid ex vivo platelet activation, and related plasma levels to platelet count and the soluble platelet activation markers P-selectin and CXCL7. Methods Plasma levels of Ang-1, Ang-2, VEGF, P-selectin and CXCL7 were measured in CTAD plasma, minimizing ex vivo platelet activation, in 27 patients with febrile Plasmodium falciparum malaria at presentation and day 2 and 5 of treatment and in 25 healthy controls. Results Levels of Ang-1, Ang-2 and VEGF were higher at day 0 in malaria patients compared to healthy controls. Ang-2 levels, which is a marker of endothelial activation, decreased after start of antimalarial treatment. In contrast, Ang-1 and VEGF plasma levels increased and this corresponded with the increase in platelet number. Soluble P-selectin and CXCL7 levels followed the same trend as Ang-1 and VEGF levels. Plasma levels of these four proteins correlated strongly in malaria patients, but only moderately in controls. Conclusion In contrast to previous studies, we found elevated plasma levels of Ang-1 and VEGF in patients with malaria resulting from in vivo platelet activation. Ang-1 release from platelets may be important to dampen the disturbing effects of Ang-2 on the endothelium. Evaluation of plasma levels of these angiogenic proteins requires close adherence to a stringent protocol to minimize ex vivo platelet activation.

Collaboration


Dive into the Rintis Noviyanti's collaboration.

Top Co-Authors

Avatar

Jutta Marfurt

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar

Ric N. Price

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar

Leily Trianty

Eijkman Institute for Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Handayuni

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah Auburn

Charles Darwin University

View shared research outputs
Top Co-Authors

Avatar

Boni F. Sebayang

Eijkman Institute for Molecular Biology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge