Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rishi Paliwal is active.

Publication


Featured researches published by Rishi Paliwal.


Nanomedicine: Nanotechnology, Biology and Medicine | 2009

Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery.

Rishi Paliwal; Shivani Rai; Bhuvaneshwar Vaidya; Kapil Khatri; Amit K. Goyal; Neeraj Mishra; Abhinav Mehta; Suresh P. Vyas

Solid lipid nanoparticles (SLNs) are essentially composed of triglyceride(s) that orient to form a polar core with polar heads oriented toward the aqueous phase, resembling chylomicrons. The composition of such SLNs may alter the course of drug absorption predominantly to and through lymphatic route and regions, presumably following a transcellular path of lipid absorption, especially by enterocytes and polar epithelial cells of the intestine. SLNs were prepared using stearic acid, glycerol monostearate, tristearin, and Compritol 888 ATO by solvent diffusion method using demineralized double-distilled water as the dispersion medium. The SLNs were characterized for shape, size, zeta potential, and percentage drug content and its release. The characterization of SLNs suggests that Compritol 888 ATO-based nanoparticles were heterogeneous with better drug-loading and release characteristics as compared with the other formulations. The selected products were studied for in vivo absorption and hence bioavailability by measure of area under the blood plasma curve plotted as a function of time. Periodic lymphatic concentration of drug following oral administration of respective formulations was also determined by mesenteric duct cannulation and collection of samples. The comparative study conducted on methotrexate (MTX)-bearing SLNs revealed that the formulation based on Compritol 888 ATO could noticeably improve the oral bioavailability of MTX, presumably following SLNs constituting lipid digestion and co-absorption through lymphatic transport and route.


Current Pharmaceutical Design | 2009

Nanocarriers in Ocular Drug Delivery: An Update Review

Sheetu Wadhwa; Rishi Paliwal; Shivani Rai Paliwal; S. P. Vyas

Controlled drug delivery to eye is one of the most challenging fields of pharmaceutical research. Low drug-contact time and poor ocular bioavailability due to drainage of solution, tear turnover and its dilution or lacrimation are the problems associated with conventional systems. In addition, anatomical barriers and physiological conditions of eye are also important parameters which control designing of drug delivery systems. Nanosized carriers like micro/nano-suspensions, liposome, niosome, dendrimer, nanoparticles, ocular inserts, implants, hydrogels and prodrug approaches have been developed for this purpose. These novel systems offer manifold advantages over conventional systems as they increase the efficiency of drug delivery by improving the release profile and also reduce drug toxicity. Conventional delivery systems get diluted with tear, washed away through the lacrimal gland and usually require administering at regular time intervals whereas nanocarriers release drug at constant rate for a prolonged period of time and thus enhance its absorption and site specific delivery. This review presents an overview of the various aspects of the ocular drug delivery, with special emphasis on nanocarrier based strategies, including structure of eye, its barriers, delivery routes and the challenges/limitations associated with development of novel nanocarriers. The recent progresses in therapy of ocular disease like gene therapy have also been included so that future options should also be considered from the delivery point of view. Recent progress in the delivery of proteins and peptides via ocular route has also been incorporated for reader benefit.


Journal of Drug Targeting | 2010

Hyaluronic acid modified chitosan nanoparticles for effective management of glaucoma: development, characterization, and evaluation.

Sheetu Wadhwa; Rishi Paliwal; Shivani Rai Paliwal; S. P. Vyas

In clinical practices, solution of dorzolamide hydrochloride (DH) and timolol maléate (TM) is recommended for the treatment of glaucoma. However, low drug-contact time and poor ocular bioavailability of drugs due to drainage of solution, tear turnover and its dilution or lacrimation limits its uses. In addition, systemic absorption of TM may induce undesirable cardiovascular side effects. Chitosan (CS) is a polycationic biodegradable polymer which provides sustained and local delivery of drugs to the ocular sites. Hyaluronic acid (HA) also provides synergistic effect for mucoadhesion in association with chitosan. In the present study, hyaluronic acid modified chitosan nanoparticles (CS-HA-NPs) loaded with TM and DH were developed and characterized. The CS-HA-NPs were evaluated for size, shape, zeta potential, entrapment efficiency, and mucoadhesive strength. The in vitro release study was also performed in PBS pH 7.4. The ocular irritation potential of CS-HA-NPs was estimated using draize test on albino rabbits. A significant reduction in IOP level was obtained using CS-HA-NPs as compared to plain solution of drug and a comparable higher reduction in IOP level was observed as to CS-NPs. These results suggest that HA potentialy enhance the mucoadhesiveness and efficiency of CS-NPs and may be promising carrier for ocular drug delivery.


International Journal of Pharmaceutics | 2012

Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation

Rishi Paliwal; Shivani Rai Paliwal; Govind P. Agrawal; Suresh P. Vyas

The aim of present study was to investigate the potential of mucoadhesive polymer chitosan (CS) and N-trimethyl chitosan (TMC) based nanoparticulate systems for oral bioavailability enhancement of low molecular weight heparin (LMWH). The TMC was synthesized by methylation of chitosan followed by characterization using infrared spectroscopy and (1)H-NMR spectroscopy. The IR and NMR spectra of TMC confirmed the presence of trimethyl groups and estimated the degree of quaternization for TMC about 46%. TMC nanoparticles were then prepared by ionic gelation method. The developed CS-NPs and TMC-NPs were characterized for various parameters including morphology, particle size, zeta potential, entrapment efficiency, in vitro release behavior and storage stability at different temperature and simulated gastrointestinal tract conditions. The fluorescent microscopy study confirmed the higher particle uptake of TMC-NPs by gastrointestinal epithelium in comparison to the CS-NPs. The concentration of LMWH in the systemic circulation followed by oral administration of formulations was estimated using FXa chromogenic assay. A significant increase (p<0.05) in the oral bioavailability of LMWH was observed with TMC-NPs than both CS-NPs as well as plain LMWH solution. These findings suggested that TMC nanoparicles hold promise for oral delivery of LMWH and clinical applicability for the treatment of vascular disorders like deep vein thrombosis and pulmonary embolism, etc.


Journal of Liposome Research | 2010

Development and characterization of effective topical liposomal system for localized treatment of cutaneous candidiasis

Madhu Gupta; Amit K. Goyal; Shivani Rai Paliwal; Rishi Paliwal; Neeraj Mishra; Bhuvaneshwar Vaidya; Devyani Dube; Sanjay K. Jain; Suresh P. Vyas

The localized delivery of fluconazole (FLZ) by conventional therapy is a major impediment in achieving its therapeutic efficacy against skin infections, such as cutaneous candidiasis. Therefore, the present study was aimed to develop FLZ-loaded vesicular construct(s), such as liposomes and niosomes, incorporated into carbopol gel (1%; w/w) for sustained, localized application. The liposomes and niosomes were prepared by the lipid/nonionic surfactant-based dry-film hydration method and were characterized for different parameters. In addition, antifungal activity was carried out on experimentally induced cutaneous candidiasis in immunosuppressed albino rats. The results showed that the size of liposomes and niosomes was found to be 0.348 ± 0.054 and 0.326 ± 0.033 μm with encapsulation efficiency of 31.8 ± 1.36 and 27.6 ± 1.08%, respectively. The skin-retention studies of FLZ from in vitro and in vivo experiments showed significantly higher accumulation of drug in the case of liposomal gel. The in vivo localization studies in viable skin showed that liposomal gel could produce 14.2-fold higher drug accumulation, compared with plain gel, while it was 3.3-fold more in the case of an equivalent-dose application in the form of niosomal gel. The antifungal study also confirmed the maximum therapeutic efficacy of liposomal gel, as the lowest number of cfu/mL was recorded following liposomal FLZ application. The studies signify the potential of liposomal gel for topical delivery of FLZ with increased accumulation of drug in various strata of skin vis-a-vis through sustained release of drug could maintain the localized effect, resulting in an effective treatment of a life-threatening cutaneous fungal infection.


International Journal of Pharmaceutics | 2009

Engineered chylomicron mimicking carrier emulsome for lymph targeted oral delivery of methotrexate

Rishi Paliwal; Shivani Rai Paliwal; Neeraj Mishra; Abhinav Mehta; Suresh P. Vyas

The aim of the present study was to develop chylomicron mimicking carrier emulsome for oral lymphatic delivery of methotrexate (MTX), an anticancer drug. The compritol 888 ATO (CA) was used as lipid core and soya lecithin (PC) as stabilizer. The optimized emulsome (1:1.2 mole ratio of CA:PC) showed mean particle size of 160.3+/-10.2 nm and with 72.8+/-6.5% drug entrapment efficiency. The differential scanning calorimetric studies revealed a depression in endothermic onset for MTX loaded emulsome. The rapid burst release of the drug was observed in simulated gastric fluid (SGF pH 1.2) with significant increase in particle size of emulsome. However in simulated intestinal fluid (SIF, pH 7.4) a slow and consistent release of the drug was obtained over period of 24 h. Storage stability studies were performed at different temperatures (4+/-1 and 25+/-1 degrees C) for 3 months which suggested that EML remain more stable when stored at refrigerated condition. The in vivo studies were carried out on albino rats and response was estimated collecting blood and lymph both. The pharmacokinetic parameters C(max), t(max) and AUC(0-->12h) after duodenal administration of optimized emulsomal formulation and plain MTX solution were 7.1 and 2.4 microg/mL, 4 and 1 h, 40.45 and 7.2 h microg/mL respectively. The relative bioavailability of MTX was enhanced nearly 5.7 times with optimized EML formulation when compared to plain MTX solution with higher uptake and longer residence time of MTX molecules in lymphatics. Thus, emulsome could be used as lymphotropic carrier for delivery of bioactive(s) and hence for bioavailability enhancement.


Molecular Pharmaceutics | 2012

Estrogen-Anchored pH-Sensitive Liposomes as Nanomodule Designed for Site-Specific Delivery of Doxorubicin in Breast Cancer Therapy

Shivani Rai Paliwal; Rishi Paliwal; Harish C. Pal; Ajeet K. Saxena; Pradyumana R. Sharma; Prem N. Gupta; Govind P. Agrawal; Suresh P. Vyas

The present investigation reports the development of nanoengineered estrogen receptor (ER) targeted pH-sensitive liposome for the site-specific intracellular delivery of doxorubicin (DOX) for breast cancer therapy. Estrone, a bioligand, was anchored on the surface of pH-sensitive liposome for drug targeting to ERs. The estrone-anchored pH-sensitive liposomes (ES-pH-sensitive-SL) showed fusogenic potential at acidic pH (5.5). In vitro cytotoxicity studies carried out on ER-positive MCF-7 breast carcinoma cells revealed that ES-pH-sensitive-SL formulation was more cytotoxic than non-pH-sensitive targeted liposomes (ES-SL). The flow cytometry analysis confirmed significant enhanced uptake (p < 0.05) of ES-pH-sensitive-SL by MCF-7 cells. Intracellular delivery and nuclear localization of the DOX was confirmed by fluorescence microscopy. The mechanism for higher cytotoxicity shown by estrone-anchored pH-sensitive liposomal-DOX was elucidated using reactive oxygen species (ROS) determination. The in vivo biodistribution studies and antitumor activities of formulations were evaluated on tumor bearing female Balb/c mice followed by intravenous administration. The ES-pH-sensitive-SL efficiently suppressed the breast tumor growth in comparison to both ES-SL and free DOX. Serum enzyme activities such as LDH and CPK levels were assayed for the evaluation of DOX induced cardiotoxicity. The ES-pH-sensitive-SL accelerated the intracellular trafficking of encapsulated DOX, thus increasing the therapeutic efficacy. The findings support that estrone-anchored pH-sensitive liposomes could be one of the promising nanocarriers for the targeted intracellular delivery of anticancer agents to breast cancer with reduced systemic side effects.


Expert Opinion on Therapeutic Patents | 2010

Recent advances in mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymeric carriers

Neeraj Mishra; Amit K. Goyal; Shailja Tiwari; Rishi Paliwal; Shivani Rai Paliwal; Bhuvaneshwar Vaidya; Sharad Mangal; Madhu Gupta; Devyani Dube; Abhinav Mehta; Suresh P. Vyas

Importance of the field: The mucosal delivery of vaccines provides the basis for induction of humoral, cellular and mucosal immune responses against infectious diseases. The delivery of antigens to and through mucosal barriers always remains challenging due to adverse physiological conditions (pH and enzymes) and biological barriers created by tight epithelial junctions restricting transportation of macromolecules. Mucoadhesive and biodegradable polymers offer numerous advantages in therapeutic delivery of proteins/antigens particularly through the mucosal route by protecting antigens from degradation, increasing concentration of antigen in the vicinity of mucosal tissue for better absorption, extending their residence time in the body and/or targeting them to sites of antigen uptake. Furthermore, antigen can be delivered more effectively to the antigen presenting cells by anchoring the ligand having affinity on the surface of carrier for the receptors present on the mucosal epithelial cells. Areas covered in this review: The present review covers various polymeric carriers, which allow the possibility of modification and manipulation of their properties, thereby, enhancing the effectiveness of mucosal vaccines. This article reviews the recent literature and patents in the field of vaccine delivery using mucoadhesive polymeric carriers. What the reader will gain: The reader will gain insights into various natural polymers, synthetic polymers and ligand derived polymeric carrier systems studied to enhance mucosal immunization. Take home message: Biodegradable polymeric carriers represent a promising approach for mucosal delivery of vaccine.


Drug Delivery | 2015

A review of mechanistic insight and application of pH-sensitive liposomes in drug delivery

Shivani Rai Paliwal; Rishi Paliwal; Suresh P. Vyas

Abstract The pH-sensitive liposomes have been extensively used as an alternative to conventional liposomes in effective intracellular delivery of therapeutics/antigen/DNA/diagnostics to various compartments of the target cell. Such liposomes are destabilized under acidic conditions of the endocytotic pathway as they usually contain pH-sensitive lipid components. Therefore, the encapsulated content is delivered into the intracellular bio-environment through destabilization or its fusion with the endosomal membrane. The therapeutic efficacy of pH-sensitive liposomes enables them as biomaterial with commercial utility especially in cancer treatment. In addition, targeting ligands including antibodies can be anchored on the surface of pH-sensitive liposomes to target specific cell surface receptors/antigen present on tumor cells. These vesicles have also been widely explored for antigen delivery and serve as immunological adjuvant to enhance the immune response to antigens. The present review deals with recent research updates on application of pH-sensitive liposomes in chemotherapy/diagnostics/antigen/gene delivery etc.


Mini-reviews in Medicinal Chemistry | 2009

Chitosan and its Role in Ocular Therapeutics

Sheetu Wadhwa; Rishi Paliwal; Shivani Rai Paliwal; S. P. Vyas

From the past few decades, tremendous awareness has been laid on the use of natural polymers in ocular drug delivery. Chitosan, a modified natural carbohydrate polymer, has number of applications in the field of ophthalmics and attracted a great deal of attention of scientific community, academicians and environmentalists due to its unique features. Chitosan has been explored for the delivery of drugs, genes, biotechnological products, proteins and peptides to the target site within ocular tissues. Chitosan being a polycationic in nature interacts with the polyanionic surface of ocular mucosa through hydrogen bonding /ionic interactions and enhance the mucoadhesive effect of formulation. Sustained and controlled ocular delivery can be achieved with chitosan based formulations like chitosan gels, inserts, chitosan coated liposome/niosome and chitosan nanoparticles. This review discussed various aspects related to chitosan and chitosan based formulations particularly developed for ocular therapeutics. The fate and toxicological consideration related to chitosan, resulting with its interaction to ocular tissues, has also been summed up in addition.

Collaboration


Dive into the Rishi Paliwal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Suresh P. Vyas

Dr. Hari Singh Gour University

View shared research outputs
Top Co-Authors

Avatar

Bhuvaneshwar Vaidya

Keck Graduate Institute of Applied Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Amit K. Goyal

Central Electronics Engineering Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kapil Khatri

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prem N. Gupta

Banaras Hindu University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. K. Mitra

National Centre for Medium Range Weather Forecasting

View shared research outputs
Top Co-Authors

Avatar

D. Rajan

National Centre for Medium Range Weather Forecasting

View shared research outputs
Researchain Logo
Decentralizing Knowledge