Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita C. Tostes is active.

Publication


Featured researches published by Rita C. Tostes.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2008

Aldosterone and Angiotensin II Synergistically Stimulate Migration in Vascular Smooth Muscle Cells Through c-Src-Regulated Redox-Sensitive RhoA Pathways

Augusto C. Montezano; Glaucia E. Callera; Alvaro Yogi; Ying He; Rita C. Tostes; Gang He; Ernesto L. Schiffrin; Rhian M. Touyz

Objective—Synergistic interactions between aldosterone (Aldo) and angiotensin II (Ang II) have been implicated in vascular inflammation, fibrosis, and remodeling. Molecular mechanisms underlying this are unclear. We tested the hypothesis that c-Src activation, through receptor tyrosine kinase transactivation, is critically involved in synergistic interactions between Aldo and Ang II and that it is upstream of promigratory signaling pathways in vascular smooth muscle cells (VSMCs). Methods and Results—VSMCs from WKY rats were studied. At low concentrations (10−10 mol/L) Aldo and Ang II alone did not influence c-Src activation, whereas in combination they rapidly increased phosphorylation (P<0.01), an effect blocked by eplerenone (Aldo receptor antagonist) and irbesartan (AT1R blocker). This synergism was attenuated by AG1478 and AG1296 (inhibitors of EGFR and PDGFR, respectively), but not by AG1024 (IGFR inhibitor). Aldo and Ang II costimulation induced c-Src–dependent activation of NAD(P)H oxidase and c-Src–independent activation of ERK1/2 (P<0.05), without effect on ERK5, p38MAPK, or JNK. Aldo/Ang II synergistically activated RhoA/Rho kinase and VSMC migration, effects blocked by PP2, apocynin, and fasudil, inhibitors of c-Src, NADPH oxidase, and Rho kinase, respectively. Conclusions—Aldo/Ang II synergistically activate c-Src, an immediate signaling response, through EGFR and PDGFR, but not IGFR transactivation. This is associated with activation of redox-regulated RhoA/Rho kinase, which controls VSMC migration. Although Aldo and Ang II interact to stimulate ERK1/2, such effects are c-Src–independent. These findings indicate differential signaling in Aldo-Ang II crosstalk and highlight the importance of c-Src in redox-sensitive RhoA, but not ERK1/2 signaling. Blockade of Aldo/Ang II may be therapeutically useful in vascular remodeling associated with abnormal VSMC migration.


Cardiovascular Research | 2010

Thyroid hormone stimulates NO production via activation of the PI3K/Akt pathway in vascular myocytes

Maria Alicia Carrillo-Sepulveda; Graziela S. Ceravolo; Zuleica B. Fortes; Maria Helena C. Carvalho; Rita C. Tostes; Francisco R.M. Laurindo; R. Clinton Webb; Maria Luiza M. Barreto-Chaves

AIMS Thyroid hormone (TH) rapidly relaxes vascular smooth muscle cells (VSMCs). However, the mechanisms involved in this effect remain unclear. We hypothesize that TH-induced rapid vascular relaxation is mediated by VSMC-derived nitric oxide (NO) production and is associated with the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signalling pathway. METHODS AND RESULTS NO levels were determined using a NO-specific fluorescent dye (DAF-2) and nitrite (NO2-) levels. Expression of NO synthase (NOS) isoforms and proteins of the PI3K/Akt pathway was determined by both western blotting and immunocytochemistry. Myosin light chain (MLC) phosphorylation levels were also investigated by western blotting. Exposure of cultured VSMCs from rat thoracic aortas to triiodothyronine (T3) resulted in a significant decrease of MLC phosphorylation levels. T3 also induced a rapid increase in Akt phosphorylation and increased NO production in a dose-dependent manner (0.001-1 microM). VSMCs stimulated with T3 for 30 min showed an increase in the expression of all three NOS isoforms and augmented NO production, effects that were prevented by inhibitors of PI3K. Vascular reactivity studies showed that vessels treated with T3 displayed a decreased response to phenylephrine, which was reversed by NOS inhibition. These data suggest that T3 treatment induces greater generation of NO both in aorta and VSMCs and that this phenomenon is endothelium independent. In addition, these findings show for the first time that the PI3K/Akt signalling pathway is involved in T3-induced NO production by VSMCs, which occurs with expressive participation of inducible and neuronal NOS. CONCLUSION Our data strongly indicate that T3 causes NO-dependent rapid relaxation of VSMC and that this effect is mediated by the PI3K/Akt signalling pathway.


Hypertension | 2009

Increased activation of stromal interaction molecule-1/Orai-1 in aorta from hypertensive rats: a novel insight into vascular dysfunction.

Fernanda R.C. Giachini; Chin Wei Chiao; Fernando S. Carneiro; Victor V. Lima; Zidonia N. Carneiro; Anne M. Dorrance; Rita C. Tostes; R. Clinton Webb

Disturbances in the regulation of cytosolic calcium (Ca2+) concentration play a key role in the vascular dysfunction associated with arterial hypertension. Stromal interaction molecules (STIMs) and Orai proteins represent a novel mechanism to control store-operated Ca2+ entry. Although STIMs act as Ca2+ sensors for the intracellular Ca2+ stores, Orai is the putative pore-forming component of Ca2+ release–activated Ca2+ channels at the plasma membrane. We hypothesized that augmented activation of Ca2+ release–activated Ca2+/Orai-1, through enhanced activity of STIM-1, plays a role in increased basal tonus and vascular reactivity in hypertensive animals. Endothelium-denuded aortic rings from Wistar-Kyoto and stroke-prone spontaneously hypertensive rats were used to evaluate contractions because of Ca2+ influx. Depletion of intracellular Ca2+ stores, which induces Ca2+ release–activated Ca2+ activation, was performed by placing arteries in Ca2+ free-EGTA buffer. The addition of the Ca2+ regular buffer produced greater contractions in aortas from stroke-prone spontaneously hypertensive rats versus Wistar-Kyoto rats. Thapsigargin (10 &mgr;mol/L), an inhibitor of the sarcoplasmic reticulum Ca2+ ATPase, further increased these contractions, especially in stroke-prone spontaneously hypertensive rat aorta. Addition of the Ca2+ release–activated Ca2+ channel inhibitors 2-aminoethoxydiphenyl borate (100 &mgr;mol/L) or gadolinium (100 &mgr;mol/L), as well as neutralizing antibodies to STIM-1 or Orai-1, abolished thapsigargin-increased contraction and the differences in spontaneous tone between the groups. Expression of Orai-1 and STIM-1 proteins was increased in aorta from stroke-prone spontaneously hypertensive rats when compared with Wistar-Kyoto rats. These results support the hypothesis that both Orai-1 and STIM-1 contribute to abnormal vascular function in hypertension. Augmented activation of STIM-1/Orai-1 may represent the mechanism that leads to impaired control of intracellular Ca2+ levels in hypertension.


The Journal of Sexual Medicine | 2011

Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice

Haroldo A. Toque; Rita C. Tostes; Lin Yao; Zhimin Xu; R. Clinton Webb; Ruth B. Caldwell; R. William Caldwell

INTRODUCTION Diabetes-induced erectile dysfunction involves elevated arginase (Arg) activity and expression. Because nitric oxide (NO) synthase and Arg share and compete for their substrate L-arginine, NO production is likely linked to regulation of Arg. Arg is highly expressed and implicated in erectile dysfunction. AIM It was hypothesized that Arg-II isoform deletion enhances relaxation function of corpora cavernosal (CC) smooth muscle in a streptozotocin (STZ) diabetic model. METHODS Eight weeks after STZ-induced diabetes, vascular functional studies, Arg activity assay, and protein expression levels of Arg and constitutive NOS (using Western blots) were assessed in CC tissues from nondiabetic wild type (WT), diabetic (D) WT (WT + D), Arg-II knockout (KO), and Arg-II KO+D mice (N = 8-10 per group). MAIN OUTCOME MEASURES Inhibition or lack of arginase results in facilitation of CC relaxation in diabetic CC. RESULTS Strips of CC from Arg-II KO mice exhibited an enhanced maximum endothelium-dependent relaxation (from 70 + 3% to 84 + 4%) and increased nitrergic relaxation (by 55%, 71%, 42%, 42%, and 24% for 1, 2, 4, 8 and 16 Hz, respectively) compared with WT mice. WT + D mice showed a significant reduction of endothelium-dependent maximum relaxation (44 + 8%), but this impairment of relaxation was significantly prevented in Arg-II KO+D mice (69 + 4%). Sympathetic-mediated and alpha-adrenergic agent-induced contractile responses also were increased in CC strips from D compared with non-D controls. Contractile responses were significantly lower in Arg-II KO control and D versus the WT groups. WT + D mice increased Arg activity (1.5-fold) and Arg-II protein expression and decreased total and phospho-eNOS at Ser-1177, and nNOS levels. These alterations were not seen in Arg-II KO mice. Additionally, the Arg inhibitor BEC (50 µM) enhanced nitrergic and endothelium-dependent relaxation in CC of WT + D mice. CONCLUSION These studies show for the first time that Arg-II deletion improves CC relaxation in type 1 diabetes.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2013

Early effects of high-fat diet on neurovascular function and focal ischemic brain injury

Weiguo Li; Roshini Prakash; Dhruv Chawla; Wenting Du; Sean P. Didion; Jessica A. Filosa; Quanguang Zhang; Darrell W. Brann; Victor V. Lima; Rita C. Tostes; Adviye Ergul

Obesity is a risk factor for stroke, but the early effects of high-fat diet (HFD) on neurovascular function and ischemic stroke outcomes remain unclear. The goal of this study was to test the hypotheses that HFD beginning early in life 1) impairs neurovascular coupling, 2) causes cerebrovascular dysfunction, and 3) worsens short-term outcomes after cerebral ischemia. Functional hyperemia and parenchymal arteriole (PA) reactivity were measured in rats after 8 wk of HFD. The effect of HFD on basilar artery function after middle cerebral artery occlusion (MCAO) and associated O-GlcNAcylation were assessed. Neuronal cell death, infarct size, hemorrhagic transformation (HT) frequency/severity, and neurological deficit were evaluated after global ischemia and transient MCAO. HFD caused a 10% increase in body weight and doubled adiposity without a change in lipid profile, blood glucose, and blood pressure. Functional hyperemia and PA relaxation were decreased with HFD. Basilar arteries from stroked HFD rats were more sensitive to contractile factors, and acetylcholine-mediated relaxation was impaired. Vascular O-GlcNAcylated protein content was increased with HFD. This group also showed greater mortality rate, infarct volume, HT occurrence rate, and HT severity and poor functional outcome compared with the control diet group. These results indicate that HFD negatively affects neurovascular coupling and cerebrovascular function even in the absence of dyslipidemia. These early cerebrovascular changes may be the cause of greater cerebral injury and poor outcomes of stroke in these animals.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2009

PYK2/PDZ-RhoGEF Links Ca2+ Signaling to RhoA

Zhekang Ying; Fernanda R.C. Giachini; Rita C. Tostes; R. Clinton Webb

Objective—Ras homolog gene family member A (RhoA)/Rho-kinase-mediated Ca2+ sensitization is a critical component of constrictor responses. The present study investigates how angiotensin II activates RhoA. Methods and Results—Adenoviral vectors were used to manipulate the expression of regulator of G protein signaling (RGS) domain containing Rho-specific guanine exchange factors (RhoGEFs) and proline-rich tyrosine kinase 2 (PYK2), a nonreceptor tyrosine kinase, in primary rat vascular smooth muscle cells. As an evidence of RhoA activation, RhoA translocation and MYPT1 (the regulatory subunit of myosin light chain phosphatase) phosphorylation were analyzed by Western blot. Results showed that overexpression of PDZ-RhoGEF, but not p115-RhoGEF or leukemia-associated RhoGEF (LARG), enhanced RhoA activation by angiotensin II. Knockdown of PDZ-RhoGEF decreased RhoA activation by angiotensin II. PDZ-RhoGEF was phosphorylated and activated by PYK2 in vitro, and knockdown of PDZ-RhoGEF reduced RhoA activation by constitutively active PYK2, indicating that PDZ-RhoGEF links PYK2 to RhoA. Knockdown of PYK2 or PDZ-RhoGEF markedly decreased RhoA activation by A23187, a Ca2+ ionophore, demonstrating that PYK2/PDZ-RhoGEF couples RhoA activation to Ca2+. Conclusions—PYK2 and PDZ-RhoGEF are necessary for angiotensin II–induced RhoA activation and for Ca2+ signaling to RhoA.


Clinical Science | 2008

Endothelin, sex and hypertension

Rita C. Tostes; Zuleica B. Fortes; Glaucia E. Callera; Augusto C. Montezano; Rhian M. Touyz; R. Clinton Webb; Maria Helena C. Carvalho

The ETs (endothelins) comprise a family of three 21-amino-acid peptides (ET-1, ET-2 and ET-3) and 31-amino-acid ETs (ET-1(1-31), ET-2(1-31) and ET-3(1-31)). ET-1 is synthesized from a biologically inactive precursor, big ET-1, by ECEs (ET-converting enzymes). The actions of ET-1 are mediated through activation of the G-protein-coupled ET(A) and ET(B) receptors, which are found in a variety of cells in the cardiovascular and renal systems. ET-1 has potent vasoconstrictor, mitogenic, pro-inflammatory and antinatriuretic properties, which have been implicated in the pathophysiology of a number of cardiovascular diseases. Overexpression of ET-1 has been consistently described in salt-sensitive models of hypertension and in models of renal failure, and has been associated with disease progression. Sex differences are observed in many aspects of mammalian cardiovascular function and pathology. Hypertension, as well as other cardiovascular diseases, is more common in men than in women of similar age. In experimental models of hypertension, males develop an earlier and more severe form of hypertension than do females. Although the reasons for these differences are not well established, the effects of gonadal hormones on arterial, neural and renal mechanisms that control blood pressure are considered contributing factors. Sex differences in the ET-1 pathway, with males displaying higher ET-1 levels, greater ET-1-mediated vasoconstrictor and enhanced pressor responses in comparison with females, are addressed in the present review. Sex-associated differences in the number and function of ET(B) receptors appear to be particularly important in the specific characteristics of hypertension between females and males. Although the gonadal hormones modulate some of the differences in the ET pathway in the cardiovascular system, a better understanding of the exact mechanisms involved in sex-related differences in this peptidergic system is needed. With further insights into these differences, we may learn that men and women could require different antihypertensive regimens.


Hypertension | 2009

Impaired Vasodilator Activity in Deoxycorticosterone Acetate-Salt Hypertension Is Associated With Increased Protein O-GlcNAcylation

Victor V. Lima; Fernanda R.C. Giachini; Hyehun Choi; Fernando S. Carneiro; Zidonia N. Carneiro; Zuleica B. Fortes; Maria Helena C. Carvalho; R. Clinton Webb; Rita C. Tostes

Hyperglycemia, which increases O-linked &bgr;-N-acetylglucosamine (O-GlcNAc) proteins, leads to changes in vascular reactivity. Because vascular dysfunction is a key feature of arterial hypertension, we hypothesized that vessels from deoxycorticosterone acetate and salt (DOCA-salt) rats exhibit increased O-GlcNAc proteins, which is associated with increased reactivity to constrictor stimuli. Aortas from DOCA rats exhibited increased contraction to phenylephrine (Emax [mN]=17.6±4 versus 10.7±2 control; n=6) and decreased relaxation to acetylcholine (47.6±6% versus 73.2±10% control; n=8) versus arteries from uninephrectomized rats. O-GlcNAc protein content was increased in aortas from DOCA rats (arbitrary units=3.8±0.3 versus 2.3±0.3 control; n=5). PugNAc (O-GlcNAcase inhibitor; 100 &mgr;mol/L; 24 hours) increased vascular O-GlcNAc proteins, augmented phenylephrine vascular reactivity (18.2±2 versus 10.7±3 vehicle; n=6), and decreased acetylcholine dilation in uninephrectomized (41.4±6 versus 73.2±3 vehicle; n=6) but not in DOCA rats (phenylephrine, 16.5±3 versus 18.6±3 vehicle, n=6; acetylcholine, 44.7±8 versus 47.6±7 vehicle, n=6). PugNAc did not change total vascular endothelial nitric oxide synthase levels, but reduced endothelial nitric oxide synthaseSer-1177 and AktSer-473 phosphorylation (P<0.05). Aortas from DOCA rats also exhibited decreased levels of endothelial nitric oxide synthaseSer-1177 and AktSer-473 (P<0.05) but no changes in total endothelial nitric oxide synthase or Akt. Vascular O-GlcNAc–modified endothelial nitric oxide synthase was increased in DOCA rats. Blood glucose was similar in DOCA and uninephrectomized rats. Expression of O-GlcNAc transferase, glutamine:fructose-6-phosphate amidotransferase, and O-GlcNAcase, enzymes that directly modulate O-GlcNAcylation, was decreased in arteries from DOCA rats (P<0.05). This is the first study showing that O-GlcNAcylation modulates vascular reactivity in normoglycemic conditions and that vascular O-GlcNAc proteins are increased in DOCA-salt hypertension. Modulation of increased vascular O-GlcNAcylation may represent a novel therapeutic approach in mineralocorticoid hypertension.


The Journal of Sexual Medicine | 2008

Activation of the ET-1/ETA pathway contributes to erectile dysfunction associated with mineralocorticoid hypertension.

Fernando S. Carneiro; Kenia Pedrosa Nunes; Fernanda R.C. Giachini; Victor V. Lima; Zidonia N. Carneiro; Edson F. Nogueira; Romulo Leite; Adviye Ergul; William E. Rainey; R. Clinton Webb; Rita C. Tostes

INTRODUCTION The cavernosal tissue is highly responsive to endothelin-1 (ET-1), and penile smooth muscle cells not only respond to but also synthesize ET-1. AIM Considering that ET-1 is directly involved in end-organ damage in salt-sensitive forms of hypertension, we hypothesized that activation of the ET-1/ET(A) receptor pathway contributes to erectile dysfunction (ED) associated with mineralocorticoid hypertension. METHODS Wistar rats were uninephrectomized and submitted to deoxycorticosterone acetate (DOCA)-salt treatment for 5 weeks. Control (Uni [uninephrectomized control]) animals were uninephrectomized and given tap water. Uni and DOCA-salt rats were simultaneously treated with vehicle or atrasentan (ET(A) receptor antagonist, 5 mg/Kg/day). Cavernosal reactivity to ET-1, phenylephrine (PE), ET(B) receptor agonist (IRL-1620) and electric field stimulation (EFS) were evaluated in vitro. Expression of ROCKalpha, ROCKbeta, myosin phosphatase target subunit 1 (MYPT-1), and extracellular signal-regulated kinase 1/2 (ERK 1/2) were evaluated by western blot analysis. ET-1 and ET(A) receptor mRNA expression was evaluated by real-time reverse-transcriptase polymerase chain reaction. Voltage-dependent increase in intracavernosal pressure/mean arterial pressure (ICP/MAP) was used to evaluate erectile function in vivo. MAIN OUTCOME MEASURE ET(A) receptor blockade prevents DOCA-salt-associated ED. RESULTS Cavernosal strips from DOCA-salt rats displayed augmented preproET-1 expression, increased contractile responses to ET-1 and decreased relaxation to IRL-1620. Contractile responses induced by EFS and PE were enhanced in cavernosal tissues from DOCA-salt hypertensive rats. These functional changes were associated with increased activation of the RhoA/Rho-kinase and ERK 1/2 pathways. Treatment of rats with atrasentan completely prevented changes in cavernosal reactivity in DOCA-salt rats and restored the decreased ICP/MAP, completely preventing ED in DOCA-salt rats. CONCLUSION Activation of the ET-1/ET(A) pathway contributes to mineralocorticoid hypertension-associated ED. ET(A) receptor blockade may represent an alternative therapeutic approach for ED associated with salt-sensitive hypertension and in pathological conditions where increased levels of ET-1 are present.


The Journal of Sexual Medicine | 2010

p38 Mitogen-Activated Protein Kinase (MAPK) Increases Arginase Activity and Contributes to Endothelial Dysfunction in Corpora Cavernosa from Angiotensin-II-Treated Mice

Haroldo A. Toque; Maritza J. Romero; Rita C. Tostes; Alia Shatanawi; Surabhi Chandra; Zidonia N. Carneiro; Edward W. Inscho; Robert Clinton Webb; Ruth B. Caldwell; Robert W. Caldwell

INTRODUCTION Angiotensin II (AngII) activates p38 mitogen-activated protein kinase (MAPK) and elevates arginase activity in endothelial cells. Upregulation of arginase activity has been implicated in endothelial dysfunction by reducing nitric oxide (NO) bioavailability. However, signaling pathways activated by AngII in the penis are largely unknown. AIM We hypothesized that activation of p38 MAPK increases arginase activity and thus impairs penile vascular function in AngII-treated mice. METHODS Male C57BL/6 mice were implanted with osmotic minipumps containing saline or AngII (42 µg/kg/h) for 14 days and cotreated with p38 MAPK inhibitor, SB 203580 (5 µg/kg/day), beginning 2 days before minipump implantation. Systolic blood pressure (SBP) was measured. Corpus cavernosum (CC) tissue was used for vascular functional studies and protein expression levels of p38 MAPK, arginase and constitutive NO synthase (NOS), and arginase activity. MAIN OUTCOME MEASURES Arginase expression and activity; expression of phospho-p38 MAPK, endothelial NOS (eNOS) and neuronal NOS proteins; endothelium-dependent and nitrergic nerve-mediated relaxations were determined in CC from control and AngII-infused mice. RESULTS AngII increased SBP (22%) and increased CC arginase activity and expression (∼twofold), and phosphorylated P38 MAPK levels (30%) over control. Treatment with SB 203580 prevented these effects. Endothelium-dependent NO-mediated relaxation to acetylcholine was significantly reduced by AngII and this effect was prevented by SB 203580 (P < 0.01). AngII (2 weeks) did not alter nitrergic function. However, SB 203580 significantly increased nitrergic relaxation in both control and AngII tissue at lower frequencies. Maximum contractile responses for phenylephrine and electrical field stimulation were increased by AngII (56% and 171%, respectively) and attenuated by SB 203580 treatment. AngII treatment also decreased eNOS phosphorylation at Ser-1177 compared to control. Treatment with SB 203580 prevented all these changes. CONCLUSION p38 MAPK inhibition corrects penile arginase activity and protects against erectile dysfunction caused by AngII.

Collaboration


Dive into the Rita C. Tostes's collaboration.

Top Co-Authors

Avatar

R. Clinton Webb

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor V. Lima

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Romulo Leite

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Hyehun Choi

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge