Rita Covas
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rita Covas.
Proceedings of the Royal Society of London B: Biological Sciences | 2007
Rita Covas; Michael Griesser
The reason why some bird species live in family groups is an important question of evolutionary biology that remains unanswered. Families arise when young delay the onset of independent reproduction and remain with their parents beyond independence. Explanations for why individuals forgo independent reproduction have hitherto focused on dispersal constraints, such as the absence of high-quality breeding openings. However, while constraints successfully explain within-population dispersal decisions, they fail as an ultimate explanation for variation in family formation across species. Most family-living species are long-lived and recent life-history studies demonstrated that a delayed onset of reproduction can be adaptive in long-lived species. Hence, delayed dispersal and reproduction might be an adaptive life-history decision rather than ‘the best of a bad job’. Here, we attempt to provide a predictive framework for the evolution of families by integrating life-history theory into family formation theory. We suggest that longevity favours a delayed onset of reproduction and gives parents the opportunity of a prolonged investment in offspring, an option which is not available for short-lived species. Yet, parents should only prolong their investment in offspring if this increases offspring survival and outweighs the fitness cost that parents incur, which is only possible under ecological conditions, such as a predictable access to resources. We therefore propose that both life-history and ecological factors play a role in determining the evolution of family living across species, yet we suggest different mechanisms than those proposed by previous models.
International Journal for Parasitology | 2009
Jon S. Beadell; Rita Covas; Christina Gebhard; Farah Ishtiaq; Martim Melo; Brian K. Schmidt; Susan L. Perkins; Gary R. Graves; Robert C. Fleischer
The host specificity of blood parasites recovered from a survey of 527 birds in Cameroon and Gabon was examined at several levels within an evolutionary framework. Unique mitochondrial lineages of Haemoproteus were recovered from an average of 1.3 host species (maximum=3) and 1.2 host families (maximum=3) while lineages of Plasmodium were recovered from an average of 2.5 species (maximum=27) and 1.6 families (maximum=9). Averaged within genera, lineages of both Plasmodium and Haemoproteus were constrained in their host distribution relative to random expectations. However, while several individual lineages within both genera exhibited significant host constraint, host breadth varied widely among related lineages, particularly within the genus Plasmodium. Several lineages of Plasmodium exhibited extreme generalist host-parasitism strategies while other lineages appeared to have been constrained to certain host families over recent evolutionary history. Sequence data from two nuclear genes recovered from a limited sample of Plasmodium parasites indicated that, at the resolution of this study, inferences regarding host breadth were unlikely to be grossly affected by the use of parasite mitochondrial lineages as a proxy for biological species. The use of divergent host-parasitism strategies among closely related parasite lineages suggests that host range is a relatively labile character. Since host specificity may also influence parasite virulence, these results argue for considering the impact of haematozoa on avian hosts on a lineage-specific basis.
The American Naturalist | 2008
Olivier Gimenez; Anne Viallefont; Anne Charmantier; Roger Pradel; Emmanuelle Cam; Charles R. Brown; Mark D. Anderson; Mary Bomberger Brown; Rita Covas
Addressing evolutionary questions in the wild remains a challenge. It is best done by monitoring organisms from birth to death, which is very difficult in part because individuals may or may not be resighted or recaptured. Although the issue of uncertain detection has long been acknowledged in ecology and conservation biology, in evolutionary studies of wild populations it is often assumed that detectability is perfect. We argue that this assumption may lead to flawed inference. We demonstrate that the form of natural selection acting on body mass of sociable weavers is altered and that the rate of senescence of roe deer is underestimated when not accounting for a value of detectability that is less than one. Because mark‐recapture models provide an explicit way to integrate and reliably model the detection process, we strongly recommend their use to address questions in evolutionary biology.
Behavioral Ecology and Sociobiology | 2008
Rita Covas; Morné A. Du Plessis; Claire Doutrelant
Some studies on the effects of helpers in cooperatively breeding vertebrates show a positive effect of helper presence on reproductive output whereas others find no effect. One possibility for this discrepancy is that helpers may have a positive effect when breeding conditions are adverse, while their effect might go unnoticed under good conditions. We investigate this hypothesis on sociable weavers Philetairus socius, a colonial cooperatively breeding passerine that inhabits a semi-arid region where breeding conditions vary markedly. We used multivariate mixed models to analyse the effect of helpers on reproduction under contrasting environmental and social conditions while controlling for parental and colony identity. We found that reproductive success in sociable weavers was primarily influenced by nest predation and rainfall. In addition, colony size was negatively associated with hatching and fledging success and number of young fledged per season. Helpers had a less prominent but significant influence on feeding rates and reproductive outcome. In agreement with expectations, the presence of helpers counteracted some of the negative effects of breeding in periods of low rainfall or in large colonies and was also associated with an increased number of young fledged per season. Our results illustrate that the effect of helpers might be detectable mostly under unfavourable conditions, but can contribute to improve reproductive performance in those situations.
Proceedings of the Royal Society of London B: Biological Sciences | 2002
Rita Covas; Charles R. Brown; Mark D. Anderson; Mary B. Brown
The survival of small birds is often believed to increase with increasing body mass, despite some evidence that body mass is usually maintained below the physiological maximum and that there are costs associated with high body mass, such as increased energetic expenditure and predation risk. In this study, we used an eight–year dataset to investigate survival in relation to body mass in a wild population of sociable weavers (Philetairus socius), a savannah–dwelling passerine bird. We present evidence for strong stabilizing selection on body mass, verifying the prediction that body mass probably results from a trade–off between the risks of starvation at low mass and predation at high mass.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Rita Covas
Island environments typically share characteristics such as impoverished biotas and less-seasonal climates, which should be conducive to specific adaptations by organisms. However, with the exception of morphological studies, broad-scale tests of patterns of adaptation on islands are rare. Here, I examine reproductive patterns in island birds worldwide. Reproductive life histories are influenced by latitude, which could affect the response to insularity; therefore, I additionally test this hypothesis. Island colonizers showed mostly bi-parental care, but there was a significant increase in cooperative breeding on islands. Additionally, I found support for previous suggestions of reduced fecundity, longer developmental periods and increased investment in young on islands. However, clutch size increased with latitude at a rate nearly five times faster on the mainland than on the islands revealing a substantially stronger effect of insularity at higher latitudes. Latitude and insularity may also interact to determine egg volume and incubation periods, but these effects were less clear. Analyses of reproductive success did not support an effect of reduced nest predation as a driver of reproductive change, but this requires further study. The effect of latitude detected here suggests that the evolutionary changes associated with insularity relate to environmental stability and improved adult survival.
PLOS ONE | 2013
Matthieu Paquet; Rita Covas; Olivier Chastel; Charline Parenteau; Claire Doutrelant
In egg laying species, breeding females may adjust the allocation of nutrients or other substances into eggs in order to maximise offspring or maternal fitness. Cooperatively breeding species offer a particularly interesting context in which to study maternal allocation because helpers create predictably improved conditions during offspring development. Some recent studies on cooperative species showed that females assisted by helpers produced smaller eggs, as the additional food brought by the helpers appeared to compensate for this reduction in egg size. However, it remains unclear how common this effect might be. Also currently unknown is whether females change egg composition when assisted by helpers. This effect is predicted by current maternal allocation theory, but has not been previously investigated. We studied egg mass and contents in sociable weavers (Philetairus socius). We found that egg mass decreased with group size, while fledgling mass did not vary, suggesting that helpers may compensate for the reduced investment in eggs. We found no differences in eggs’ carotenoid contents, but females assisted by helpers produced eggs with lower hormonal content, specifically testosterone, androstenedione (A4) and corticosterone levels. Taken together, these results suggest that the environment created by helpers can influence maternal allocation and potentially offspring phenotypes.
Molecular Ecology | 2015
René E. van Dijk; Rita Covas; Claire Doutrelant; Claire N. Spottiswoode; Ben J. Hatchwell
Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin‐structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long‐term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female‐biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine‐scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine‐scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female‐biased dispersal alone is unlikely to be an effective strategy.
Ecology and Evolution | 2013
Jennifer Morinay; Gonçalo C. Cardoso; Claire Doutrelant; Rita Covas
Islands are simplified, isolated ecosystems, providing an ideal set-up to study evolution. Among several traits that are expected to change on islands, an interesting but poorly understood example concerns signals used in animal communication. Islands are typified by reduced species diversity, increased population density, and reduced mate competition, all of which could affect communication signals. We used birdsong to investigate whether there are systematic changes in communication signals on islands, by undertaking a broad comparison based on pairs of closely related island-mainland species across the globe. We studied song traits related to complexity (number of different syllables, frequency bandwidth), to vocal performance (syllable delivery rate, song duration), and also three particular song elements (rattles, buzzes, and trills) generally implicated in aggressive communication. We also investigated whether song complexity was related to the number of similar sympatric species. We found that island species were less likely to produce broadband and likely aggressive song elements (rattles and buzzes). By contrast, various aspects of song complexity and performance did not differ between island and mainland species. Species with fewer same-family sympatric species used wider frequency bandwidths, as predicted by the character release hypothesis, both on continents and on islands. Our study supports the hypothesis of a reduction in aggressive behavior on islands and suggests that discrimination against closely related species is an important factor influencing birdsong evolution.
Animal Behaviour | 2011
Rita Covas; Anne-Sophie Deville; Claire Doutrelant; Claire N. Spottiswoode; Arnaud Grégoire
Understanding the evolution of cooperation requires determining the costs and benefits of cooperative behaviour. In cooperative breeders, where nonbreeding individuals assist in raising offspring, these ‘helpers’ are expected to increase the fitness of breeders and hence empirical research has focused on the effect they have on reproductive output and breeder survival. However, the effects of helpers during the postfledging period are poorly known because of the difficulty of tracking fledglings in the wild. Helper presence might be beneficial for fledglings, for example through continuous food delivery or increased predator vigilance, but potential competition between helpers and fledglings, or changes in investment of parents assisted by helpers, could counteract these positive effects and have a negative influence on postfledging survival probabilities or promote dispersal. We investigated the survival of juvenile sociable weavers, Philetairus socius, raised in pairs alone versus pairs with helpers by using capture–mark–recapture methods to control for individual detectability in survival estimation. We found that local survival in the first year was reduced in young raised by groups versus those raised by pairs. This may reflect either higher mortality or emigration of juveniles raised in groups. Hence, our study reveals significant postfledging effects of cooperative breeding that have not been reported previously and that need to be investigated in studies addressing the evolution of cooperative breeding.