Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Dreier is active.

Publication


Featured researches published by Rita Dreier.


Nature Medicine | 2009

Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis

Frank Echtermeyer; Jessica Bertrand; Rita Dreier; Ingmar Meinecke; Katja Neugebauer; Martin Fuerst; Yun Jong Lee; Yeong Wook Song; Christine Herzog; Gregor Theilmeier; Thomas Pap

Aggrecan cleavage by a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 5 (ADAMTS-5) is crucial for the breakdown of cartilage matrix during osteoarthritis, a degenerative joint disease that leads to the progressive destruction of articular structures. The mechanisms of ADAMTS-5 activation and their links to the pathogenesis of osteoarthritis remain poorly understood, but syndecans have been shown to be involved in the activation of ADAMTS-4 (ref. 3). Here we show that syndecan-4 is specifically induced in type X collagen–producing chondrocytes both in human osteoarthritis and in murine models of the disease. The loss of syndecan-4 in genetically modified mice and intra-articular injections of syndecan-4–specific antibodies into wild-type mice protect from proteoglycan loss and thereby prevent osteoarthritic cartilage damage in a surgically induced model of osteoarthritis. The occurrence of less severe osteoarthritis-like cartilage destruction in both syndecan-4–deficient mice and syndecan-4–specific antibody–treated wild-type mice results from a marked decrease in ADAMTS-5 activity. Syndecan-4 controls the activation of ADAMTS-5 through direct interaction with the protease and through regulating mitogen-activated protein kinase (MAPK)-dependent synthesis of matrix metalloproteinase-3 (MMP-3). Our data suggest that strategies aimed at the inhibition of syndecan-4 will be of great value for the treatment of cartilage damage in osteoarthritis.


Arthritis & Rheumatism | 2009

Calcification of articular cartilage in human osteoarthritis

Martin Fuerst; Jessica Bertrand; L. Lammers; Rita Dreier; Frank Echtermeyer; Y. Nitschke; F. Rutsch; F. K. W. Schäfer; Oliver Niggemeyer; J. Steinhagen; Christoph H. Lohmann; Thomas Pap; Wolfgang Rüther

OBJECTIVE Hypertrophic chondrocyte differentiation is a key step in endochondral ossification that produces basic calcium phosphates (BCPs). Although chondrocyte hypertrophy has been associated with osteoarthritis (OA), chondrocalcinosis has been considered an irregular event and linked mainly to calcium pyrophosphate dihydrate (CPPD) deposition. The aim of this study was to determine the prevalence and composition of calcium crystals in human OA and analyze their relationship to disease severity and markers of chondrocyte hypertrophy. METHODS One hundred twenty patients with end-stage OA undergoing total knee replacement were prospectively evaluated. Cartilage calcification was studied by conventional x-ray radiography, digital-contact radiography (DCR), field-emission scanning electron microscopy (FE-SEM), and synovial fluid analysis. Cartilage calcification findings were correlated with scores of knee function as well as histologic changes and chondrocyte hypertrophy as analyzed in vitro. RESULTS DCR revealed mineralization in all cartilage specimens. Its extent correlated significantly with the Hospital for Special Surgery knee score but not with age. FE-SEM analysis showed that BCPs, rather than CPPD, were the prominent minerals. On histologic analysis, it was observed that mineralization correlated with the expression of type X collagen, a marker of chondrocyte hypertrophy. Moreover, there was a strong correlation between the extent of mineralization in vivo and the ability of chondrocytes to produce BCPs in vitro. The induction of hypertrophy in healthy human chondrocytes resulted in a prominent mineralization of the extracellular matrix. CONCLUSION These results indicate that mineralization of articular cartilage by BCP is an indissociable process of OA and does not characterize a specific subset of the disease, which has important consequences in the development of therapeutic strategies for patients with OA.


Arthritis Research & Therapy | 2010

Hypertrophic differentiation of chondrocytes in osteoarthritis: the developmental aspect of degenerative joint disorders

Rita Dreier

Osteoarthritis is characterized by a progressive degradation of articular cartilage leading to loss of joint function. The molecular mechanisms regulating pathogenesis and progression of osteoarthritis are poorly understood. Remarkably, some characteristics of this joint disease resemble chondrocyte differentiation processes during skeletal development by endochondral ossification. In healthy articular cartilage, chondrocytes resist proliferation and terminal differentiation. By contrast, chondrocytes in diseased cartilage progressively proliferate and develop hypertrophy. Moreover, vascularization and focal calcification of joint cartilage are initiated. Signaling molecules that regulate chondrocyte activities in both growth cartilage and permanent articular cartilage during osteoarthritis are thus interesting targets for disease-modifying osteoarthritis therapies.


Cancer Research | 2004

Microtubule-dependent matrix metalloproteinase-2/matrix metalloproteinase-9 exocytosis: Prerequisite in human melanoma cell invasion

Eva-Maria Schnaeker; Rainer Ossig; Thomas Ludwig; Rita Dreier; Hans Oberleithner; Marianne Wilhelmi; Stefan W. Schneider

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that cleave and degrade a wide spectrum of extracellular matrix components. By enhancing turnover of extracellular matrix, MMP activity is also known to play a key role in tumor cell invasion. Because extracellular protease activity requires efficient release of these proteases to the cellular surface, we investigated storage, transport, and exocytosis of MMP-2 and MMP-9 in human melanoma cells using immunofluorescence, electrical, and biochemical techniques. Immunolabeling of melanoma cells with antibodies specific for MMP-2 and MMP-9 led to the identification of two distinct populations of small cytoplasmatic vesicles containing MMP-2 or MMP-9, respectively. In combination with α-tubulin–specific antibodies, both vesicle populations were found to be aligned along the microtubular network. Moreover, the molecular motor protein kinesin is shown to be localized on most of these vesicles, providing evidence that the identified vesicles are actively propelled along microtubules toward the plasma membrane. The functional relevance of these findings is demonstrated using low dosage (5.9 nmol/L) of paclitaxel to affect the microtubular function of melanoma cells. Although cell proliferation is not altered, paclitaxel treatment impairs secretion of MMP-2/MMP-9 and significantly reduces invasive activity in our new cell invasion assay. In conclusion, we demonstrate in melanoma cells that microtubule-dependent traffic of MMP-containing vesicles and exocytosis are critical steps for invasive behavior and therefore are potential targets for specific antitumor drugs.


Carcinogenesis | 2009

Differential roles for membrane-bound and soluble syndecan-1 (CD138) in breast cancer progression.

Viktoriya Nikolova; Chuay-Yeng Koo; Sherif A. Ibrahim; Zihua Wang; Dorothe Spillmann; Rita Dreier; Reinhard Kelsch; Jeanett Fischgräbe; Martin Smollich; Laura Rossi; Walter Sibrowski; Pia Wülfing; Ludwig Kiesel; George Wai-Cheong Yip; Martin Götte

The heparan sulfate proteoglycan syndecan-1 (Sdc1) modulates cell proliferation, adhesion, migration and angiogenesis. Proteinase-mediated shedding converts Sdc1 from a membrane-bound coreceptor into a soluble effector capable of binding the same ligands. In breast carcinomas, Sdc1 overexpression correlates with poor prognosis and an aggressive phenotype. To distinguish between the roles of membrane-bound and shed forms of Sdc1 in breast cancer progression, human MCF-7 breast cancer cells were stably transfected with plasmids overexpressing wild-type (WT), constitutively shed and uncleavable forms of Sdc1. Overexpression of WT Sdc1 increased cell proliferation, whereas overexpression of constitutively shed Sdc1 decreased proliferation. Fibroblast growth factor-2-mediated mitogen-activated protein kinase signaling was reduced following small-interfering RNA (siRNA)-mediated knockdown of Sdc1 expression. Constitutively, membrane-bound Sdc1 inhibited invasiveness, whereas soluble Sdc1 promoted invasion of MCF-7 cells into matrigel matrices. The latter effect was reversed by the matrix metalloproteinase inhibitors N-isobutyl-N-(4-methoxyphenylsufonyl) glycyl hydroxamic acid and tissue inhibitor of metalloproteinase (TIMP)-1. Affymetrix microarray analysis identified TIMP-1, Furin and urokinase-type plasminogen activator receptor as genes differentially regulated in soluble Sdc1-overexpressing cells. Endogenous TIMP-1 expression was reduced in cells overexpressing soluble Sdc1 and increased in those overexpressing the constitutively membrane-bound Sdc1. Moreover, E-cadherin protein expression was downregulated in cells overexpressing soluble Sdc1. Our results suggest that the soluble and membrane-bound forms of Sdc1 play different roles at different stages of breast cancer progression. Proteolytic conversion of Sdc1 from a membrane-bound into a soluble molecule marks a switch from a proliferative to an invasive phenotype, with implications for breast cancer diagnostics and potential glycosaminoglycan-based therapies.


Histochemistry and Cell Biology | 1998

DIFFERENTIAL EXPRESSION OF ANNEXINS I, II AND IV IN HUMAN TISSUES : AN IMMUNOHISTOCHEMICAL STUDY

Rita Dreier; K. W. Schmid; Volker Gerke; Kristina Riehemann

Abstract Annexins constitute a family of Ca2+- and phospholipid-binding proteins. Although their functions are still not clearly defined, several members of the annexin family have been implicated in membrane-related events along exocytotic and endocytotic pathways. To elucidate a possible correlation of those functional proposals with the tissue distribution of annexins, we analysed immunohistochemically the expression of annexins I, II and IV in a broad variety of human tissues. Annexins I and II were chosen for this study since their functionally relevant N-terminal domains are structurally closely related, whilst annexin IV is structurally less related to the former two proteins. The study revealed distinct expression patterns of annexins I, II and IV throughout the body. Annexin I was found in leucocytes of peripheral blood, tissue macrophages and T-lymphocytes and in certain epithelial cells (respiratory and urinary system, superficial cells of non-keratinised squamous epithelium), annexin II in endothelial cells, myoepithelial cells and certain epithelial cells (mainly respiratory and urinary system), whereas annexin IV was almost exclusively found in epithelial cells. Epithelia of the upper respiratory system, Bowman’s capsule, urothelial cells, mesothelial cells, peripheral nerves, the choroid plexus, ependymal cells and pia mater and arachnoid of meninges generally strongly expressed all three annexins investigated. The characteristic expression in different tissues and the intracellular distribution indicates that the three annexins investigated are involved in aspects of differentiation and/or physiological functions specific to these tissues.


Journal of Leukocyte Biology | 1999

Murine leukocytes with ring-shaped nuclei include granulocytes, monocytes, and their precursors.

Heike Biermann; Barbara Pietz; Rita Dreier; K. W. Schmid; Clemens Sorg; Cord Sunderkötter

Leukocytes with ring‐shaped nuclei (ring cells) are present in bone marrow (BM; ~50% of BM cells), in peripheral blood (PB), and in inflammatory infiltrates of mice, but also in humans during myeloproliferative disorders. They are usually referred to as polymorphonuclear cells (PMN), but we demonstrate that they additionally encompass different types of mononuclear (MNC)‐like ring cells. PMN ring cells had constricted ring‐shaped nuclei with a wide cytoplasmic center and were sorted among the GR‐1high fraction. The MNC‐like ring cells belonged to the GR‐1low fraction. Their nuclei were not segmented and the cytoplasmic center of their nuclei was small. They were heterogeneous with one subgroup containing monocytes/macrophages according to ultrastructure, immunophenotype (BM8, F4/80, CD13, ER‐HR3), activity of unspecific esterase, and phagocytosis of Leishmania major. A second subgroup contained myeloic precursor cells as they proliferated (Ki67), expressed ER‐MP12, and showed on ultrastructure distribution patterns of peroxidase activity compatible with myelocytes, promyelocytes, or promonocytes. A third subgroup of cells had large, sometimes lobulated nuclei, was lineage markernegative/low (GR‐1, Mac‐1, B220 etc.), CD38−, but c‐kit+ and sca‐1+, and thus belonged to a close progeny of murine hematopoietic stem cells. In PB, ring cells encompassed mainly PMN, but also monocytes and cells with characteristics of both the granulocytic and monocytic lineage. Thus, ring cells comprise mature and precursor forms of myeloic cells. Their analysis revealed that in mice a clear distinction between the granulocytic and monocytic lineage beyond the GM‐CFU stage is not always feasible. J. Leukoc. Biol. 65: 217–231; 1999.


Journal of Biological Chemistry | 2009

Heparan Sulfate-modulated, Metalloprotease-mediated Sonic Hedgehog Release from Producing Cells

Tabea Dierker; Rita Dreier; Arnd Petersen; Christian Bordych; Kay Grobe

The ectodomains of numerous proteins are released from cells by matrix metalloproteases to yield soluble intercellular regulators. A disintegrin and metalloprotease (ADAM) family members have often been found to be the responsible “sheddases,” ADAM17/tumor necrosis factor-α-converting enzyme being its best characterized member. In this work, we show that ShhNp (lipidated and membrane-tethered Sonic hedgehog) is released from Bosc23 cells by metalloprotease-mediated ectodomain shedding, resulting in a soluble and biologically active morphogen. ShhNp shedding is increased by ADAM17 coexpression and cholesterol depletion of cells with methyl-β-cyclodextrin and is reduced by metalloprotease inhibitors as well as ADAM17 RNA interference. We also show that the amount of shed ShhNp is modulated by extracellular heparan sulfate (HS) and that ShhNp shedding depends on specific HS sulfations. Based on those data, we suggest new roles for metalloproteases, including but not restricted to ADAM17, and for HS-proteoglycans in Hedgehog signaling.


Cellular Physiology and Biochemistry | 2007

Soluble signalling factors derived from differentiated cartilage tissue affect chondrogenic differentiation of rat adult marrow stromal cells.

Nazish Ahmed; Rita Dreier; Achim Göpferich; Joachim Grifka; Susanne Grässel

Background: Chondral defects show lack of proper regeneration whereas osteochondral lesions display limited regeneration capacity. Latter is probably due to immigration of chondroprogenitor cells from the subchondral bone. Known chondroprogenitor cells for cartilage tissues are multi-potent adult marrow stromal or mesenchymal stem cells (MSCs). In vitro chondrogenic differentiation of these precursor cells usually require cues from growth and signalling factors provided in vivo by surrounding tissues and cells. We hypothesise that signalling factors secreted by differentiated cartilage tissue can initiate and maintain chondrogenic differentiation status of MSCs. Methods: To study such paracrine communication between allogenic rat articular cartilage and rat MSCs embedded in alginate beads a novel coculture system without addition of external growth factors has been established. Results: Impact of cartilage on differentiating MSCs was observed at two different time points. Firstly, sustained expression of Sox9 was observed at an early stage which indicated induction of chondrogenic differentiation. Secondly, late stage repression of collagen X indicated pre-hypertrophic arrest of differentiation. In the culture supernatant we have identified vascular endothelial growth factor alpha (VEGF-164α), matrix metalloproteinase (MMP) -13 and tissue inhibitors of MMPs (TIMP-1 and TIMP-2) which could be traced back either to the cartilage explant or to the MSCs under the influence of cartilage. Conclusion: The identified factors might be involved in regulation of collagen X gene and protein expression and therefore, may have an impact on the control and regulation of MSCs differentiation.


Developmental Cell | 2011

Sonic Hedgehog Shedding Results in Functional Activation of the Solubilized Protein

Stefanie Ohlig; Pershang Farshi; Ute Pickhinke; Johannes van den Boom; Susanne Höing; Stanislav Jakuschev; Daniel Hoffmann; Rita Dreier; Hans R. Schöler; Tabea Dierker; Christian Bordych; Kay Grobe

All Hedgehog (Hh) proteins are released from producing cells despite being synthesized as N- and C-terminally lipidated, membrane-tethered molecules. Thus, a cellular mechanism is needed for Hh solubilization. We previously suggested that a disintegrin and metalloprotease (ADAM)-mediated shedding of Sonic hedgehog (ShhNp) from its lipidated N and C termini results in protein solubilization. This finding, however, seemed at odds with the established role of N-terminal palmitoylation for ShhNp signaling activity. We now resolve this paradox by showing that N-palmitoylation of ShhNp N-terminal peptides is required for their proteolytic removal during solubilization. These peptides otherwise block ShhNp zinc coordination sites required for ShhNp binding to its receptor Patched (Ptc), explaining the essential yet indirect role of N-palmitoylation for ShhNp function. We suggest a functional model in which membrane-tethered multimeric ShhNp is at least partially autoinhibited in trans but is processed into fully active, soluble multimers upon palmitoylation-dependent cleavage of inhibitory N-terminal peptides.

Collaboration


Dive into the Rita Dreier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Pap

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Jessica Bertrand

Otto-von-Guericke University Magdeburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kay Grobe

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Richard Stange

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Joachim Grifka

University of Regensburg

View shared research outputs
Top Co-Authors

Avatar

G. Nalesso

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge