Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Mancini is active.

Publication


Featured researches published by Rita Mancini.


Proceedings of the National Academy of Sciences of the United States of America | 2001

FHIT gene therapy prevents tumor development in Fhit-deficient mice

Kristoffel R. Dumon; Hideshi Ishii; Louise Y.Y. Fong; Nicola Zanesi; Vincenzo Fidanza; Rita Mancini; Andrea Vecchione; Raffaele Baffa; Francesco Trapasso; Matthew J. During; Kay Huebner; Carlo M. Croce

The tumor suppressor gene FHIT spans a common fragile site and is highly susceptible to environmental carcinogens. FHIT inactivation and loss of expression is found in a large fraction of premaligant and malignant lesions. In this study, we were able to inhibit tumor development by oral gene transfer, using adenoviral or adenoassociated viral vectors expressing the human FHIT gene, in heterozygous Fhit+/− knockout mice, that are prone to tumor development after carcinogen exposure. We therefore suggest that FHIT gene therapy could be a novel clinical approach not only in treatment of early stages of cancer, but also in prevention of human cancer.


Proceedings of the National Academy of Sciences of the United States of America | 2001

The tumor spectrum in FHIT-deficient mice

Nicola Zanesi; Vincenzo Fidanza; Louise Y.Y. Fong; Rita Mancini; Teresa Druck; Mauro Valtieri; Thomas Rüdiger; Peter McCue; Carlo M. Croce; Kay Huebner

Mice carrying one inactivated Fhit allele (Fhit +/− mice) are highly susceptible to tumor induction by N-nitrosomethylbenzylamine, with 100% of Fhit +/− mice exhibiting tumors of the forestomach/squamocolumnar junction vs. 25% of Fhit +/+ controls. In the current study a single N-nitrosomethylbenzylamine dose was administered to Fhit +/+, +/−, and −/− mice to compare carcinogen susceptibility in +/- and −/− Fhit-deficient mice. At 29 weeks after treatment, 7.7% of wild-type mice had tumors. Of the Fhit −/− mice 89.5% exhibited tumors (average 3.3 tumors/mouse) of the forestomach and squamocolumnar junction; half of the −/− mice had medium (2 mm diameter) to large (>2 mm) tumors. Of the Fhit +/− mice 78% exhibited tumors (average 2.4 tumors/mouse) and 22% showed medium to large tumors. Untreated Fhit-deficient mice have been observed for up to 2 years for spontaneous tumors. Fhit +/− mice (average age 21 mo) exhibit an average of 0.94 tumors of different types; Fhit −/− mice (average age 16 mo) also showed an array of tumors (average 0.76 tumor/mouse). The similar spontaneous and induced tumor spectra observed in mice with one or both Fhit alleles inactivated suggests that Fhit may be a one-hit tumor suppressor gene in some tissues.


Cell Death and Disease | 2013

Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells

Alessia Noto; S Raffa; C De Vitis; Giuseppe Roscilli; Debora Malpicci; Pierpaolo Coluccia; A Di Napoli; Alberto Ricci; Maria Rosaria Giovagnoli; Luigi Aurisicchio; Maria Rosaria Torrisi; Gennaro Ciliberto; Rita Mancini

In recent years, studies of cancer development and recurrence have been influenced by the cancer stem cells (CSCs)/cancer-initiating cells (CICs) hypothesis. According to this, cancer is sustained by highly positioned, chemoresistant cells with extensive capacity of self renewal, which are responsible for disease relapse after chemotherapy. Growth of cancer cells as three-dimensional non-adherent spheroids is regarded as a useful methodology to enrich for cells endowed with CSC-like features. We have recently reported that cell cultures derived from malignant pleural effusions (MPEs) of patients affected by adenocarcinoma of the lung are able to efficiently form spheroids in non-adherent conditions supplemented with growth factors. By expression profiling, we were able to identify a set of genes whose expression is significantly upregulated in lung tumor spheroids versus adherent cultures. One of the most strongly upregulated gene was stearoyl-CoA desaturase (SCD1), the main enzyme responsible for the conversion of saturated into monounsaturated fatty acids. In the present study, we show both by RNA interference and through the use of a small molecule inhibitor that SCD1 is required for lung cancer spheroids propagation both in stable cell lines and in MPE-derived primary tumor cultures. Morphological examination and image analysis of the tumor spheroids formed in the presence of SCD1 inhibitors showed a different pattern of growth characterized by irregular cell aggregates. Electron microscopy revealed that the treated spheroids displayed several features of cellular damage and immunofluorescence analysis on optical serial sections showed apoptotic cells positive for the M30 marker, most of them positive also for the stemness marker ALDH1A1, thus suggesting that the SCD1 inhibitor is selectively killing cells with stem-like properties. Furthermore, SCD1-inhibited lung cancer cells were strongly impaired in their in vivo tumorigenicity and ALDH1A1 expression. These results suggest that SCD1 is a critical target in lung cancer tumor-initiating cells.


PLOS ONE | 2011

Spheres Derived from Lung Adenocarcinoma Pleural Effusions: Molecular Characterization and Tumor Engraftment

Rita Mancini; Enrico Giarnieri; Claudia De Vitis; Donatella Malanga; Giuseppe Roscilli; Alessia Noto; Emanuele Marra; Carmelo Laudanna; Pietro Zoppoli; Pasquale De Luca; Andrea Affuso; Luigi Ruco; Arianna Di Napoli; Giuseppe Mesiti; Luigi Aurisicchio; Alberto Ricci; Salvatore Mariotta; Lara Pisani; Claudio Andreetti; Giuseppe Viglietto; Erino A. Rendina; Maria Rosaria Giovagnoli; Gennaro Ciliberto

Malignant pleural effusions (MPEs) could represent an excellent source to culture a wide variety of cancer cells from different donors. In this study, we set up culture conditions for cancer cells deriving from MPEs of several patients affected by the most frequent form of lung cancer, namely the subset of non small cell lung cancers (NSCLC) classified as Lung Adenocarcinomas (AdenoCa) which account for approximately 40% of lung cancer cases. AdenoCa malignant pleural effusions gave rise to in vitro cultures both in adherent and/or in spheroid conditions in almost all cases analyzed. We characterized in greater detail two samples which showed the most efficient propagation in vitro. In these samples we also compared gene profiles of spheroid vs adherent cultures and identified a set of differentially expressed genes. Finally we achieved efficient tumor engraftment in recipient NOD/SCID mice, also upon inoculation of small number of cells, thus suggesting indirectly the presence of tumor initiating cells.


Journal of Translational Medicine | 2013

Activation of an early feedback survival loop involving phospho-ErbB3 is a general response of melanoma cells to RAF/MEK inhibition and is abrogated by anti-ErbB3 antibodies

Luigi Fattore; Emanuele Marra; Maria Elena Pisanu; Alessia Noto; Claudia De Vitis; Francesca Belleudi; Luigi Aurisicchio; Rita Mancini; Maria Rosaria Torrisi; Paolo Antonio Ascierto; Gennaro Ciliberto

BackgroundTreatment of advanced melanoma has been improved with the advent of the BRAF inhibitors. However, a limitation to such treatment is the occurrence of resistance. Several mechanisms have been identified to be responsible for the development of resistance, either MEK-dependent or MEK-independent. In order to overcome resistance due to reactivation of MEK signaling, MEK inhibitors are being clinically developed with promising results. However, also in this case resistance inevitably occurs. It has been recently reported that ErbB3, a member of the EGFR receptor family, may be involved in the establishment of drug resistance.MethodsThree melanoma cell lines were tested: LOX IMVI (BRAF V600E), MST-L (BRAF V600R) and WM266 (BRAF V600D). Phosphorylation of Receptor Tyrosine Kinases (RTKs) was assessed by an RTK array. Western blot analysis was performed on total protein extracts using anti-ErbB3, anti-AKT and anti-ERK 1/2 antibodies. The expression of neuregulin after vemurafenib treatment was assessed by Real Time PCR and Western blotting. The growth inhibitory effects of vemurafenib, GSK1120212b and/or anti-ErbB3 mAbs were evaluated by in vitro colony formation assays.ResultsIn the present study we demonstrate that ErbB3 is the main RTK undergoing rapidly hyperphosphorylation upon either treatment with a BRAF inhibitor or with a MEK inhibitor in a panel of melanoma cell lines harboring a variety of V600BRAF mutations and that this results in a strong activation of phospho-AKT. Importantly, ErbB3 activation is fully abrogated by the simultaneous use of anti-ErbB3 monoclonal antibodies, which are also shown to potently synergize with BRAF inhibitors in the inactivation of both AKT and ERK pathways and in the inhibition of melanoma cell growth. We show that upregulation of phospho-ErbB3 is due to an autocrine loop involving increased transcription and production of neuregulin by melanoma cells.ConclusionsOn the basis of these results, we propose that initial co-treatment with BRAF and/or MEK inhibitors and anti-ErbB3 antibodies should be pursued as a strategy to reduce the ErbB3-dependent feedback survival mechanism and enhance duration of clinical response.


Journal of Cellular Physiology | 2012

Novel anti-ErbB3 monoclonal antibodies show therapeutic efficacy in xenografted and spontaneous mouse tumors†

Luigi Aurisicchio; Emanuele Marra; Laura Luberto; Fabrizio Carlomosti; Claudia De Vitis; Alessia Noto; Zeynep Gunes; Giuseppe Roscilli; Giuseppe Mesiti; Rita Mancini; Maurizio Alimandi; Gennaro Ciliberto

The role of the ErbB3 receptor in signal transduction is to augment the signaling repertoire of active heterodimeric ErbB receptor complexes through activating the PI3K/AKT pathway, which in turn promotes survival and proliferation. ErbB3 has recently been proposed to be involved in acquired resistance to tyrosine kinase inhibitors (TKIs), and is therefore a promising new drug cancer target. Since ErbB3 is a kinase defective receptor, it cannot be targeted by small molecule inhibitors, whereas monoclonal antibodies may offer a viable strategy for pharmacological intervention. In this study, we have utilized DNA electroporation (DNA‐EP) to generate a set of novel hybridomas directed against human ErbB3, which have been characterized for their biochemical and functional properties and selected for their ability to negatively regulate the ErbB3‐mediated signaling pathway. In vitro, the anti‐ErbB3 antibodies modulate the growth rate of cancer cells of different origins. In vivo they show antitumoral properties in a xenograft model of human pancreatic tumor and in the ErbB2‐driven carcinogenesis genetically engineered mouse model (GEMM) for mammary tumor, the BALB/neuT. Our data confirm that downregulating the ErbB3‐mediated signals with the use of anti‐ErbB3 monoclonal antibodies is both feasible and relevant for therapeutic purposes and provides new opportunities for novel anti‐ErbB3 combinatory strategies for cancer treatment. J. Cell. Physiol. 227: 3381–3388, 2012.


Journal of Cellular Physiology | 2013

Decreased expression of autophagic beclin 1 protein in idiopathic pulmonary fibrosis fibroblasts

Alberto Ricci; Emanuela Cherubini; Davide Scozzi; Vittorio Pietrangeli; Luca Tabbì; Salvatore Raffa; Laura Leone; Vincenzo Visco; Maria Rosaria Torrisi; Pierdonato Bruno; Rita Mancini; Gennaro Ciliberto; Claudio Terzano; Salvatore Mariotta

Autophagy is the main cellular pathway for degradation of long‐lived proteins and organelles and regulates cell fate in response to stress. Beclin 1 is a key regulator of this process. In some settings autophagy and apoptosis seem to be interconnected. Recent reports indicate that fibroblasts in idiopathic pulmonary fibrosis (IPF) acquire resistance to apoptosis. Here, we examined the expression of beclin 1, and of the anti apoptotic protein Bcl‐2 in human IPF fibroblasts using immunohistochemistry and molecular biology in bioptic sections, in primary cultures of fibroblasts taken from patients with IPF and in fibroblast cell lines. Expression of beclin 1 in fibroblasts from IPF was down‐regulated in comparison with fibroblasts from normal lungs while the anti‐apoptotic protein Bcl‐2 expression was over‐expressed. Treatment of fibroblast cell cultures with cisplatin induced a significant increase in beclin 1 and caspase 3 protein levels but a reduction in Bcl‐2 expression. These observations were confirmed by the analysis of acid compartments and transmission electron microscopy. Our results demonstrate a modified expression of the apoptotic beclin 1 Bcl‐2 proteins in human IPF fibroblasts suggesting the existence of an autophagy/apoptosis system dysfunction. J. Cell. Physiol. 228: 1516–1524, 2013.


BioMed Research International | 2013

Detection of EGFR Mutations by TaqMan Mutation Detection Assays Powered by Competitive Allele-Specific TaqMan PCR Technology

Cristin Roma; Claudia Esposito; Anna Maria Rachiglio; Raffaella Pasquale; Alessia Iannaccone; Nicoletta Chicchinelli; Renato Franco; Rita Mancini; Salvatore Pisconti; Antonella De Luca; Gerardo Botti; Alessandro Morabito; Nicola Normanno

Epidermal growth factor receptor (EGFR) mutations in non-small-cell lung cancer (NSCLC) are predictive of response to treatment with tyrosine kinase inhibitors. Competitive Allele-Specific TaqMan PCR (castPCR) is a highly sensitive and specific technology. EGFR mutations were assessed by TaqMan Mutation Detection Assays (TMDA) based on castPCR technology in 64 tumor samples: a training set of 30 NSCLC and 6 colorectal carcinoma (CRC) samples and a validation set of 28 NSCLC cases. The sensitivity and specificity of this method were compared with routine diagnostic techniques including direct sequencing and the EGFR Therascreen RGQ kit. Analysis of the training set allowed the identification of the threshold value for data analysis (0.2); the maximum cycle threshold (Ct = 37); and the cut-off ΔCt value (7) for the EGFR TMDA. By using these parameters, castPCR technology identified both training and validation set EGFR mutations with similar frequency as compared with the Therascreen kit. Sequencing detected rare mutations that are not identified by either castPCR or Therascreen, but in samples with low tumor cell content it failed to detect common mutations that were revealed by real-time PCR based methods. In conclusion, our data suggest that castPCR is highly sensitive and specific to detect EGFR mutations in NSCLC clinical samples.


Cell Cycle | 2012

Monoclonal antibody-induced ErbB3 receptor internalization and degradation inhibits growth and migration of human melanoma cells

Francesca Belleudi; Emanuele Marra; Francesca Mazzetta; Luigi Fattore; Maria Rosaria Giovagnoli; Rita Mancini; Luigi Aurisicchio; Maria Rosaria Torrisi; Gennaro Ciliberto

Members of the ErbB receptor family are targets of a growing numbers of small molecules and monoclonal antibodies inhibitors currently under development for the treatment of cancer. Although historical efforts have been directed against ErbB1 (EGFR) and ErbB2 (HER2/neu), emerging evidences have pointed to ErbB3 as a key node in the activation of proliferation/survival pathways from the ErbB receptor family and have fueled enthusiasm toward the clinical development of anti-ErbB3 agents. In this study, we have evaluated the potential therapeutic efficacy of a set of three recently generated anti-human ErbB3 monoclonals, A2, A3 and A4, in human primary melanoma cells. We show that in melanoma cells expressing ErbB1, ErbB3 and ErbB4 but not ErbB2 receptor ligands activate the PI3K/AKT pathway, and this leads to increased cell proliferation and migration. While antibodies A3 and A4 are able to potently inhibit ligand-induced signaling, proliferation and migration, antibody A2 is unable to exert this effect. In attempt to understand the mechanism of action and the basis of this different behavior, we demonstrate, through a series of combined approaches, that antibody efficacy strongly correlates with antibody-induced receptor internalization, degradation and inhibition of receptor recycling to the cell surface. Finally, fine epitope mapping studies through a peptide array show that inhibiting vs. non-inhibiting antibodies have a dramatically different mode of binding to the to the receptor extracellular domain. Our study confirms the key role of ErbB3 and points to exploitation of novel combination therapies for treatment of malignant melanoma.


Proceedings of the National Academy of Sciences of the United States of America | 2016

miR-579-3p controls melanoma progression and resistance to target therapy

Luigi Fattore; Rita Mancini; Mario Acunzo; Giulia Romano; Alessandro Laganà; Maria Elena Pisanu; Debora Malpicci; Gabriele Madonna; Domenico Mallardo; Marilena Capone; Franco Fulciniti; Luca Mazzucchelli; Gerardo Botti; Carlo M. Croce; Paolo Antonio Ascierto; Gennaro Ciliberto

Significance In this paper we identify a previously poorly characterized miRNA, namely miR-579-3p, as a master regulator of melanoma progression and drug resistance. Our results underscore the complexity of adaptive mechanisms that help the establishment of resistance to target therapies and the necessity to identify them to develop more effective combination therapies. Therapy of melanoma patients harboring activating mutations in the BRAF (V-raf murine sarcoma viral oncogene homolog B1) oncogene with a combination of BRAF and MEK inhibitors is plagued by the development of drug resistance. Mutational events, as well as adaptive mechanisms, contribute to the development of drug resistance. In this context we uncover here the role of a miRNA, miR-579-3p. We first show that low expression of miR-579-3p is a negative prognostic factor correlating with poor survival. Expression levels of miR-579-3p decrease from nevi to stage III/IV melanoma samples and even further in cell lines resistant to BRAF/MEK inhibitors. Mechanistically, we demonstrate that miR-579-3p acts as an oncosuppressor by targeting the 3′UTR of two oncoproteins: BRAF and an E3 ubiquitin protein ligase, MDM2. Moreover miR-579-3p ectopic expression impairs the establishment of drug resistance in human melanoma cells. Finally, miR-579-3p is strongly down-regulated in matched tumor samples from patients before and after the development of resistance to targeted therapies.

Collaboration


Dive into the Rita Mancini's collaboration.

Top Co-Authors

Avatar

Alessia Noto

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Claudia De Vitis

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Ricci

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Roscilli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Salvatore Mariotta

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Enrico Giarnieri

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge